Active/de-active transition of respiratory complex I in bacteria, fungi, and animals

被引:80
作者
Maklashina, E
Kotlyar, AB
Cecchini, G
机构
[1] Vet Adm Med Ctr, Div Mol Biol, San Francisco, CA 94121 USA
[2] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[3] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Biochem, Ramat Aviv, Israel
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2003年 / 1606卷 / 1-3期
关键词
NADH : ubiquinone oxidoreductase; complex I; active/de-active transition; mitochondrial respiration;
D O I
10.1016/S0005-2728(03)00087-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian complex I (NADH:ubiquinone oxidoreductase) exists as a mixture of interconvertible active (A) and de-activated (D) forms. The A-form is capable of NADH:quinone-reductase catalysis, but not the D-form. Complex I from the bacterium Paracoccus denitrificans, by contrast, exists only in the A-form. This bacterial complex contains 32 fewer subunits than the manimalian complex. The question arises therefore if the structural complexity of complex I from higher organisms correlates with its ability to undergo the A/D transition. In the present study, it was found that complex I from the bacterium Escherichia coli and from non-vertebrate organisms (earthworm, lobster, and cricket) did not show the A/D transitions. Vertebrate organisms (carp, frog, chicken), however, underwent similar A/D transitions to those of the well-characterized bovine complex I. Further studies showed that complex I from the lower eukaryotes, Neurospora crassa and Yarrowia lipolytica, exhibited very distinct A/D transitions with much lower activation barriers compared to the bovine enzyme. The A/D transitions of complex I as they relate to structure and regulation of enzymatic activity are discussed. Published by Elsevier B.V.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 35 条
[11]   Catalytic activity of NADH-ubiquinone oxidoreductase (Complex I) in intact mitochondria - Evidence for the slow active/inactive transition [J].
Grivennikova, VG ;
Kapustin, AN ;
Vinogradov, AD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (12) :9038-9044
[12]   Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition [J].
Grivennikova, VG ;
Maklashina, EO ;
Gavrikova, EV ;
Vinogradov, AD .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1997, 1319 (2-3) :223-232
[13]  
Johnson D., 1967, METHOD ENZYMOL, P94, DOI DOI 10.1016/0076-6879(67)10018-9
[14]  
Kerscher SJ, 2001, J CELL SCI, V114, P3915
[15]   Diversity and origin of alternative NADH:ubiquinone oxidoreductases [J].
Kerscher, SJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1459 (2-3) :274-283
[16]   SLOW ACTIVE INACTIVE TRANSITION OF THE MITOCHONDRIAL NADH-UBIQUINONE REDUCTASE [J].
KOTLYAR, AB ;
VINOGRADOV, AD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1019 (02) :151-158
[17]   Comparison of energization of complex I in membrane particles from Paracoccus denitrificans and bovine heart mitochondria [J].
Kotlyar, AB ;
Albracht, SPJ ;
van Spanning, RJM .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1365 (1-2) :53-59
[18]   EFFECT OF CA2+ IONS ON THE SLOW ACTIVE INACTIVE TRANSITION OF THE MITOCHONDRIAL NADH-UBIQUINONE REDUCTASE [J].
KOTLYAR, AB ;
SLED, VD ;
VINOGRADOV, AD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (02) :144-150
[19]   Anaerobic expression of Escherichia coli succinate dehydrogenase:: Functional replacement of fumarate reductase in the respiratory chain during anaerobic growth [J].
Maklashina, E ;
Berthold, DK ;
Cecchini, G .
JOURNAL OF BACTERIOLOGY, 1998, 180 (22) :5989-5996
[20]   Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart [J].
Maklashina, E ;
Sher, Y ;
Zhou, HZ ;
Gray, MO ;
Karliner, JS ;
Cecchini, G .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2002, 1556 (01) :6-12