Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains

被引:172
作者
Fabes, E [1 ]
Mendez, O
Mitrea, M
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
layer potentials; Sobolev-Besov spaces; Poisson's problem; Lipschitz domains; helmholtz decompositions;
D O I
10.1006/jfan.1998.3316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study inhomogeneous boundary value problems for the Laplacian in arbitrary Lipschitz domains with data in Sobolev-Besov spaces. As such, this is a natural continuation of work in [Jerison and Kenig, J. Funct. Anal. (1995), 16-219] where the inhomogeneous Dirichlet problem is treated via harmonic measure techniques. The novelty of our approach resides in the systematic use of boundary integral methods. In this regard, the key results are establishing the invertibility of the classical layer potential operators on scales of Sobolev-Besov spaces on Lipschitz boundaries for optimal ranges of indices. Applications to L-P-based Helmholtz type decompositions of vector fields in Lipschitz domains are also presented. (C) 1998 Academic Press.
引用
收藏
页码:323 / 368
页数:46
相关论文
共 28 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
[Anonymous], 1984, FUNCTION SPACES SUBS
[3]  
Bennet C., 1988, INTERPOLATION OPERAT
[4]  
Bergh J., 1976, INTERPOLATION SPACES
[5]   The Neumann problem on Lipschitz domains in Hardy spaces of order less than one [J].
Brown, RM .
PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (02) :389-407
[6]  
Calderon A.-P., 1964, Studia Math., V24, P113, DOI DOI 10.4064/SM-24-2-113-190
[7]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[8]   LQ-ESTIMATES FOR GREEN POTENTIALS IN LIPSCHITZ DOMAINS [J].
DAHLBERG, BEJ .
MATHEMATICA SCANDINAVICA, 1979, 44 (01) :149-170
[9]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[10]   Besov regularity for elliptic boundary value problems [J].
Dahlke, S ;
DeVore, RA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (1-2) :1-16