Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode

被引:48
作者
Aravindan, V. [1 ]
Chuiling, W. [1 ]
Madhavi, S. [1 ,2 ,3 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst ERI N, Singapore 637553, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[3] Nanyang Technol Univ, TUM CREATE Ctr Electromobil, Singapore 637553, Singapore
来源
RSC ADVANCES | 2012年 / 2卷 / 19期
基金
新加坡国家研究基金会;
关键词
LITHIUM-ION BATTERIES; HYBRID SUPERCAPACITOR; ELECTROLYTE; NANOWIRES; CHALLENGES; OXYGEN; ANODE;
D O I
10.1039/c2ra20826a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
NASICON type LiTi2(PO4)(3) particles are synthesized by a modified pechini type polymerizable complex method at 1000 degrees C in an air atmosphere. The synthesized LiTi2(PO4)(3) particles are ball milled and subsequently carbon coated from the carbonization of glucose (C-LiTi2(PO4)(3)). Li-insertion properties are evaluated in half-cell configurations (Li/C-LiTi2(PO4)(3)) and delivered an initial discharge capacity of 117 mAh g(-1) at a current density of 15 mA g(-1). Carbon coating alleviates the severe capacity fading of LiTi2(PO4)(3) during cycling. A full-cell with an operating potential of 1.5 V is constructed employing C-LiTi2(PO4)(3) as the anode with a spinel cathode, LiMn2O4, which delivered the first discharge capacity of 103 mAh g(-1) at current density of 150 mA g(-1). The LiMn2O4/C-LiTi2(PO4)(3) cell retains 72% of initial discharge capacity after 200 cycles and the results suggest that, the full-cell can be used for miniature applications by replacing other rechargeable systems like lead-acid, Ni-Cd and Ni-MH.
引用
收藏
页码:7534 / 7539
页数:6
相关论文
共 29 条
[1]   On the structure of Li3Ti2(PO4)3 [J].
Aatiq, A ;
Ménétrier, M ;
Croguennec, L ;
Suard, E ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :2971-2978
[2]   A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries [J].
Aboulaich, Abelmaula ;
Bouchet, Renaud ;
Delaizir, Gaelle ;
Seznec, Vincent ;
Tortet, Laurence ;
Morcrette, Mathieu ;
Rozier, Patrick ;
Tarascon, Jean-Marie ;
Viallet, Virginie ;
Dolle, Mickael .
ADVANCED ENERGY MATERIALS, 2011, 1 (02) :179-183
[3]   Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors [J].
Aravindan, V. ;
Chuiling, W. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. ;
Madhavi, S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5808-5814
[4]   Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode [J].
Aravindan, V. ;
Reddy, M. V. ;
Madhavi, S. ;
Mhaisalkar, S. G. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8850-8854
[5]   Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Madhavi, Srinivasan ;
Liu, Hua-Kun .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (51) :14326-14346
[6]   TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :501-506
[7]   The synthesis and lithium intercalation electrochemistry of VO2(B) ultra-thin nanowires [J].
Armstrong, Graham ;
Canales, Jesus ;
Armstrong, A. Robert ;
Bruce, Peter G. .
JOURNAL OF POWER SOURCES, 2008, 178 (02) :723-728
[8]   TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte [J].
Armstrong, Graham ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Reale, Priscilla ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2006, 18 (19) :2597-+
[9]  
Besenhard JO, 2002, CHEMPHYSCHEM, V3, P155, DOI 10.1002/1439-7641(20020215)3:2<155::AID-CPHC155>3.0.CO
[10]  
2-S