Light Concentration at the Nanometer Scale

被引:301
作者
Alvarez-Puebla, Ramon [1 ,2 ]
Liz-Marzan, Luis M. [1 ,2 ]
Javier Garcia de Abajo, F. [3 ,4 ]
机构
[1] Univ Vigo, CSIC, Dept Quim Fis, Vigo 36310, Spain
[2] Univ Vigo, CSIC, Unidad Asociada, Vigo 36310, Spain
[3] CSIC, Inst Opt Daza de Valdes, E-28006 Madrid, Spain
[4] Univ Vigo, Unidad Asociada CSIC, Madrid 28006, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2010年 / 1卷 / 16期
关键词
OPTICAL SUPERRESOLUTION; SPECTROSCOPY; PLASMONS; NANOPARTICLES; GROWTH;
D O I
10.1021/jz100820m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Visible and near-infrared optical excitations are common currency in the biological world, and consequently, they are routinely used to investigate microscopic phenomena taking place in living organisms and their environment. However, the wavelength of light within that energy region is above hundreds of nanometers, thus averting the possibility of direct nanometer-scale resolution. We show in this Perspective that narrow gaps between metals and sharp tips in colloidal gold particles constitute excellent "light confiners" that permit solving this problem, and in particular, they lead to record levels of surface-enhanced Raman scattering Our results are framed in the context of a historical quest toward achieving optical focusing in the near field, and we offer a tutorial explanation of why evanescent waves such as plasmons are needed for deep-subwavelength focusing. These results provide the required elements of intuition to understand light concentration at the nanometer scale and to design optimized systems for application in ultrasensitive optical analyses and nonlinear photonics
引用
收藏
页码:2428 / 2434
页数:5
相关论文
共 40 条
[1]  
Abbe E., 1873, Archiv f ur Mikroskopische Anatomie, V9, P413, DOI DOI 10.1007/BF02956173
[2]   Adaptive subwavelength control of nano-optical fields [J].
Aeschlimann, Martin ;
Bauer, Michael ;
Bayer, Daniela ;
Brixner, Tobias ;
Garcia de Abajo, F. Javier ;
Pfeiffer, Walter ;
Rohmer, Martin ;
Spindler, Christian ;
Steeb, Felix .
NATURE, 2007, 446 (7133) :301-304
[3]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[4]   Evolution of quantum superoscillations and optical superresolution without evanescent waves [J].
Berry, MV ;
Popescu, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :6965-6977
[5]   Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit [J].
Boto, AN ;
Kok, P ;
Abrams, DS ;
Braunstein, SL ;
Williams, CP ;
Dowling, JP .
PHYSICAL REVIEW LETTERS, 2000, 85 (13) :2733-2736
[6]   Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion [J].
Braun, Gary B. ;
Lee, Seung Joon ;
Laurence, Ted ;
Fera, Nick ;
Fabris, Laura ;
Bazan, Guillermo C. ;
Moskovits, Martin ;
Reich, Norbert O. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (31) :13622-13629
[7]   Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Zhao, Jing ;
Van Duyne, Richard P. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1653-1661
[8]   Etching and Growth: An Intertwined Pathway to Silver Nanocrystals with Exotic Shapes [J].
Cobley, Claire M. ;
Rycenga, Matthew ;
Zhou, Fei ;
Li, Zhi-Yuan ;
Xia, Younan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (26) :4824-4827
[9]  
CUMPSTON BH, 1999, NATURE, V51, P398
[10]   Optical frequency mixing at coupled gold nanoparticles [J].
Danckwerts, Matthias ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2007, 98 (02)