Polar residues drive association of polyleucine transmembrane helices

被引:316
作者
Zhou, FX
Merianos, HJ
Brunger, AT
Engelman, DM
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[3] Stanford Univ, Dept Cellular & Mol Physiol, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
关键词
D O I
10.1073/pnas.041593698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although many polar residues are directly involved in transmembrane protein functions, the extent to which they contribute to more general structural features is still unclear. Previous studies have demonstrated that asparagine residues can drive transmembrane helix association through interhelical hydrogen bonding [Choma, C., Gratkowski, H., Lear, J. D. & DeGrado, W. F. (2000) Nat Struct. Biol. 7, 161-166; and Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T. & Engelman, D. M. (2000) Nat. Struct. Biol. 7, 154-160]. We have studied the ability of other polar residues to promote helix association in detergent micelles and in biological membranes. Our results show that polyleucine sequences with Asn, Asp, Gln, Glu, and His, residues capable of being simultaneously hydrogen bond donors and accepters, form homo- or heterooligomers. In contrast, polyleucine sequences with Ser, Thr, and Tyr do not associate more than the polyleucine sequence alone. The results therefore provide experimental evidence that interactions between polar residues in the helices of transmembrane proteins may serve to provide structural stability and oligomerization specificity. Furthermore, such interactions can allow structural flexibility required for the function of some membrane proteins.
引用
收藏
页码:2250 / 2255
页数:6
相关论文
共 47 条
  • [1] Statistical analysis of predicted transmembrane α-helices
    Arkin, IT
    Brunger, AT
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1998, 1429 (01): : 113 - 128
  • [2] MULTIPLE INDEPENDENT ACTIVATIONS OF THE NEU ONCOGENE BY A POINT MUTATION ALTERING THE TRANSMEMBRANE DOMAIN OF P185
    BARGMANN, CI
    HUNG, MC
    WEINBERG, RA
    [J]. CELL, 1986, 45 (05) : 649 - 657
  • [3] The voltage sensor in voltage-dependent ion channels
    Bezanilla, F
    [J]. PHYSIOLOGICAL REVIEWS, 2000, 80 (02) : 555 - 592
  • [4] A method for determining transmembrane helix association and orientation in detergent micelles using small angle x-ray scattering
    Bu, ZM
    Engelman, DM
    [J]. BIOPHYSICAL JOURNAL, 1999, 77 (02) : 1064 - 1073
  • [5] Choma C, 2000, NAT STRUCT BIOL, V7, P161
  • [6] MEMBRANE-PROTEIN ASSOCIATION BY POTENTIAL INTRAMEMBRANE CHARGE PAIRS
    COSSON, P
    LANKFORD, SP
    BONIFACINO, JS
    KLAUSNER, RD
    [J]. NATURE, 1991, 351 (6325) : 414 - 416
  • [7] STRUCTURE OF THE PROTEIN SUBUNITS IN THE PHOTOSYNTHETIC REACTION CENTER OF RHODOPSEUDOMONAS-VIRIDIS AT 3A RESOLUTION
    DEISENHOFER, J
    EPP, O
    MIKI, K
    HUBER, R
    MICHEL, H
    [J]. NATURE, 1985, 318 (6047) : 618 - 624
  • [8] Structure of the subunit c oligomer in the F1F0 ATP synthase:: Model derived from solution structure of the monomer and cross-linking in the native enzyme
    Dmitriev, OY
    Jones, PC
    Fillingame, RH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) : 7785 - 7790
  • [9] Engelman DM, 1984, PROTEIN FOLDING PROB, P87
  • [10] Mechanism of constitutive activation of the AT1 receptor:: Influence of the size of the agonist switch binding residue Asn111
    Feng, YH
    Miura, SI
    Husain, A
    Karnik, SS
    [J]. BIOCHEMISTRY, 1998, 37 (45) : 15791 - 15798