The evolutionary and epidemiological dynamics of the paramyxoviridae

被引:96
作者
Pomeroy, Laura W. [1 ]
Bjornstad, Ottar N. [1 ,2 ,3 ]
Holmes, Edward C. [1 ,2 ]
机构
[1] Penn State Univ, Ctr Infect Dis Dynam, Dept Biol, University Pk, PA 16802 USA
[2] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
[3] Penn State Univ, Dept Entomol, University Pk, PA 16802 USA
关键词
paramyxovirus; coalescent; population bottleneck; measles virus; mumps virus; canine distemper virus;
D O I
10.1007/s00239-007-9040-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Paramyxoviruses are responsible for considerable disease burden in human and wildlife populations: measles and mumps continue to affect the health of children worldwide, while canine distemper virus causes serious morbidity and mortality in a wide range of mammalian species. Although these viruses have been studied extensively at both the epidemiological and the phylogenetic scales, little has been done to integrate these two types of data. Using a Bayesian coalescent approach, we infer the evolutionary and epidemiological dynamics of measles, mumps and canine distemper viruses. Our analysis yielded data on viral substitution rates, the time to common ancestry, and elements of their demographic history. Estimates of rates of evolutionary change were similar to those observed in other RNA viruses, ranging from 6.585 to 11.350 x 10(-4) nucleotide substitutions per site, per year. Strikingly, the mean Time to the Most Recent Common Ancestor (TMRCA) was both similar and very recent among the viruses studied, ranging from only 58 to 91 years (1908 to 1943). Worldwide, the paramyxoviruses studied here have maintained a relatively constant level of genetic diversity. However, detailed heterchronous samples illustrate more complex dynamics in some epidemic populations, and the relatively low levels of genetic diversity (population size) in all three viruses is likely to reflect the population bottlenecks that follow recurrent outbreaks.
引用
收藏
页码:98 / 106
页数:9
相关论文
共 34 条
[11]  
DRUMMOND AJ, 2003, BEAST V 1 0
[12]   Relaxed phylogenetics and dating with confidence [J].
Drummond, Alexei J. ;
Ho, Simon Y. W. ;
Phillips, Matthew J. ;
Rambaut, Andrew .
PLOS BIOLOGY, 2006, 4 (05) :699-710
[13]  
Ewens W.J., 2004, MATH POPULATION GENE, DOI DOI 10.1007/978-0-387-21822-9
[14]  
FAUQUET CM, 2005, VIRUS TAXOMOMY CLASS
[15]   (Meta)population dynamics of infectious diseases [J].
Grenfell, B ;
Harwood, J .
TRENDS IN ECOLOGY & EVOLUTION, 1997, 12 (10) :395-399
[16]   A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes [J].
Hanada, K ;
Suzuki, Y ;
Gojobori, T .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (06) :1074-1080
[17]   Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis [J].
Jenkins, GM ;
Rambaut, A ;
Pybus, OG ;
Holmes, EC .
JOURNAL OF MOLECULAR EVOLUTION, 2002, 54 (02) :156-165
[18]  
Lamb R.A., 2001, Fields virology, P1305
[19]   Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan [J].
Mochizuki, M ;
Hashimoto, M ;
Hagiwara, S ;
Yoshida, Y ;
Ishiguro, S .
JOURNAL OF CLINICAL MICROBIOLOGY, 1999, 37 (09) :2936-2942
[20]  
Örvell C, 2002, J GEN VIROL, V83, P2489, DOI 10.1099/0022-1317-83-10-2489