From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy

被引:137
作者
Amthor, Jeffrey S. [1 ]
机构
[1] Univ Sydney, Fac Agr Food & Nat Resources C81, Sydney, NSW 2006, Australia
关键词
C-3/C-4; efficiency; growth; maintenance; photorespiration; photosynthesis; respiration; solar radiation; PHOTOSYNTHETICALLY ACTIVE RADIATION; QUANTUM YIELD; CARBOHYDRATE EXPORT; ELECTRON-TRANSPORT; CONSTRUCTION COST; PROTON TRANSLOCATION; ALTERNATIVE OXIDASE; C-4; PHOTOSYNTHESIS; VASCULAR PLANTS; PHOTOSYSTEM-I;
D O I
10.1111/j.1469-8137.2010.03505.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The relationship between solar radiation capture and potential plant growth is of theoretical and practical importance. The key processes constraining the transduction of solar radiation into phyto-energy (i.e. free energy in phytomass) were reviewed to estimate potential solar-energy-use efficiency. Specifically, the output : input stoichiometries of photosynthesis and photorespiration in C-3 and C-4 systems, mobilization and translocation of photosynthate, and biosynthesis of major plant biochemical constituents were evaluated. The maintenance requirement, an area of important uncertainty, was also considered. For a hypothetical C-3 grain crop with a full canopy at 30 degrees C and 350 ppm atmospheric [CO2], theoretically potential efficiencies (based on extant plant metabolic reactions and pathways) were estimated at c. 0.041 J J(-1) incident total solar radiation, and c. 0.092 J J(-1) absorbed photosynthetically active radiation (PAR). At 20 degrees C, the calculated potential efficiencies increased to 0.053 and 0.118 J J(-1) (incident total radiation and absorbed PAR, respectively). Estimates for a hypothetical C-4 cereal were c. 0.051 and c. 0.114 J J(-1), respectively. These values, which cannot be considered as precise, are less than some previous estimates, and the reasons for the differences are considered. Field-based data indicate that exceptional crops may attain a significant fraction of potential efficiency.
引用
收藏
页码:939 / 959
页数:21
相关论文
共 142 条
[1]   Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain [J].
Allen, JF .
TRENDS IN PLANT SCIENCE, 2003, 8 (01) :15-19
[2]   ENERGY CONTENT, CONSTRUCTION COST AND PHYTOMASS ACCUMULATION OF GLYCINE-MAX (L) MERR AND SORGHUM-BICOLOR (L) MOENCH GROWN IN ELEVATED CO2 IN THE FIELD [J].
AMTHOR, JS ;
MITCHELL, RJ ;
RUNION, GB ;
ROGERS, HH ;
PRIOR, SA ;
WOOD, CW .
NEW PHYTOLOGIST, 1994, 128 (03) :443-450
[3]  
AMTHOR JS, 1994, PHYSIOLOGY AND DETERMINATION OF CROP YIELD, P221
[4]   The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later [J].
Amthor, JS .
ANNALS OF BOTANY, 2000, 86 (01) :1-20
[5]   Efficiency of lignin biosynthesis: a quantitative analysis [J].
Amthor, JS .
ANNALS OF BOTANY, 2003, 91 (06) :673-695
[6]   TILLAGE AND N-FERTILIZATION EFFECTS ON MAIZE ROOT-GROWTH AND ROOT - SHOOT RATIO [J].
ANDERSON, EL .
PLANT AND SOIL, 1988, 108 (02) :245-251
[7]   The Universal Protein Resource (UniProt) in 2010 [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Antunes, Ricardo ;
Barrell, Daniel ;
Bely, Benoit ;
Bingley, Mark ;
Binns, David ;
Bower, Lawrence ;
Browne, Paul ;
Chan, Wei Mun ;
Dimmer, Emily ;
Eberhardt, Ruth ;
Fedotov, Alexander ;
Foulger, Rebecca ;
Garavelli, John ;
Huntley, Rachael ;
Jacobsen, Julius ;
Kleen, Michael ;
Laiho, Kati ;
Leinonen, Rasko ;
Legge, Duncan ;
Lin, Quan ;
Liu, Wudong ;
Luo, Jie ;
Orchard, Sandra ;
Patient, Samuel ;
Poggioli, Diego ;
Pruess, Manuela ;
Corbett, Matt ;
di Martino, Giuseppe ;
Donnelly, Mike ;
van Rensburg, Pieter ;
Bairoch, Amos ;
Bougueleret, Lydie ;
Xenarios, Ioannis ;
Altairac, Severine ;
Auchincloss, Andrea ;
Argoud-Puy, Ghislaine ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bolleman, Jerven ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D142-D148
[8]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[9]   PHOTOSYNTHESIS - IS IT LIMITING TO BIOMASS PRODUCTION [J].
BEADLE, CL ;
LONG, SP .
BIOMASS, 1985, 8 (02) :119-168
[10]   CAN PERENNIAL C-4 GRASSES ATTAIN HIGH EFFICIENCIES OF RADIANT ENERGY-CONVERSION IN COOL CLIMATES [J].
BEALE, CV ;
LONG, SP .
PLANT CELL AND ENVIRONMENT, 1995, 18 (06) :641-650