Asymptotic limits of SU(2) and SU(3) Wigner functions

被引:24
作者
Rowe, DJ
de Guise, H
Sanders, BC
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
关键词
D O I
10.1063/1.1358305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Asymptotic limits are given for the SU(2) Wigner D-mn(j) functions as j --> infinity for three domains of m and n. Similar asymptotic limits are given for the SU(3) Wigner functions of an irrep with highest weight (lambda ,0) as lambda --> infinity. The results are shown to be relevant to the analysis of experiments with quantum interferometers. (C) 2001 American Institute of Physics.
引用
收藏
页码:2315 / 2342
页数:28
相关论文
共 33 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[3]  
Biedenharn L. S., 1981, ANGULAR MOMENTUM QUA
[4]   Nonclassical interferometry with intelligent light [J].
Brif, C ;
Mann, A .
PHYSICAL REVIEW A, 1996, 54 (05) :4505-4518
[5]   CLASSICAL LIMITS OF CLEBSCH-GORDAN COEFFICIENTS, RACAH COEFFICIENTS AND DMNL (PHI,THETA,PSI)-FUNCTIONS [J].
BRUSSAARD, PJ ;
TOLHOEK, HA .
PHYSICA, 1957, 23 (10) :955-971
[6]   QUANTUM-MECHANICAL LOSSLESS BEAM SPLITTER - SU(2) SYMMETRY AND PHOTON STATISTICS [J].
CAMPOS, RA ;
SALEH, BEA ;
TEICH, MC .
PHYSICAL REVIEW A, 1989, 40 (03) :1371-1384
[7]   NEW FORMALISM FOR 2-PHOTON QUANTUM OPTICS .1. QUADRATURE PHASES AND SQUEEZED STATES [J].
CAVES, CM ;
SCHUMAKER, BL .
PHYSICAL REVIEW A, 1985, 31 (05) :3068-3092
[8]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[9]   Arbitrary precision in multipath interferometry [J].
DAriano, GM ;
Paris, MGA .
PHYSICAL REVIEW A, 1997, 55 (03) :2267-2271
[10]   GEOMETRY OF SYMMETRIZED STATES [J].
GILMORE, R .
ANNALS OF PHYSICS, 1972, 74 (02) :391-&