Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production

被引:20
作者
Lu, Yuan [1 ]
Zhao, Hongxin [1 ]
Zhang, Chong [1 ]
Lai, Qiheng [1 ]
Wu, Xi [1 ]
Xing, Xin-Hui [1 ]
机构
[1] Tsinghua Univ, Inst Biochem Engn, Dept Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Anaerobic fermentation; Enterobacter aerogens; Formate dehydrogenase; Hydrogen production; Metabolic analysis; NADH regeneration; AEROBIC FLUORESCENCE RECOVERY; HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; BIOHYDROGEN PRODUCTION; CARBON; NADH;
D O I
10.1007/s10529-009-0036-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
An expression system for NAD(+)-dependent formate dehydrogenase gene (fdh1), from Candida boidinii, was constructed and cloned into Enterobacter aerogenes IAM1183. With the fdh1 expression, the total H-2 yield was attributed to a decrease in activity of the lactate pathway and an increase of the formate pathway flux due to the NADH regeneration. Analysis of the redox state balance and ethanol-to-acetate ratio in the fdhl-expressed strain showed that increased reducing power arose from the reconstruction of NADH regeneration pathway from formate thereby contributing to the improved H-2 production.
引用
收藏
页码:1525 / 1530
页数:6
相关论文
共 14 条
[1]   Metabolic engineering of Escherichia coli:: Increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase [J].
Berríos-Rivera, SJ ;
Bennett, GN ;
San, KY .
METABOLIC ENGINEERING, 2002, 4 (03) :217-229
[2]   Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations [J].
Converti, A ;
Perego, P .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (2-3) :303-309
[3]   Improving the yield from fermentative hydrogen production [J].
Kraemer, Jeremy T. ;
Bagley, David M. .
BIOTECHNOLOGY LETTERS, 2007, 29 (05) :685-695
[4]   Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae [J].
Mandal, Biswajit ;
Nath, Kaushik ;
Das, Debabrata .
BIOTECHNOLOGY LETTERS, 2006, 28 (11) :831-835
[5]   Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states [J].
Nakashimada, Y ;
Rachman, MA ;
Kakizono, T ;
Nishio, N .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (11-12) :1399-1405
[6]   A simplified method for assay of hydrogenase activities of H2 evolution and uptake in Enterobacter aerogenes [J].
Ren, YL ;
Xing, XH ;
Zhang, C ;
Gou, ZX .
BIOTECHNOLOGY LETTERS, 2005, 27 (14) :1029-1033
[7]   Cofactor regeneration of both NAD+ from NADH and NADP+ from NADPH:NADH oxidase from Lactobacillus sanfranciscensis [J].
Riebel, BR ;
Gibbs, PR ;
Wellborn, WB ;
Bommarius, AS .
ADVANCED SYNTHESIS & CATALYSIS, 2003, 345 (6-7) :707-712
[8]   Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli [J].
Riondet, C ;
Cachon, R ;
Waché, Y ;
Alcaraz, G ;
Diviès, C .
JOURNAL OF BACTERIOLOGY, 2000, 182 (03) :620-626
[9]   Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues [J].
Slusarczyk, H ;
Felber, S ;
Kula, MR ;
Pohl, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (05) :1280-1289
[10]   Construction and characterization of fermentative lactate dehydrogenase Escherichia coli mutant and its potential for bacterial hydrogen production [J].
Sode, K ;
Watanabe, M ;
Makimoto, H ;
Tomiyama, M .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1999, 77-9 (1-3) :317-323