Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization

被引:85
作者
Christiansen, F [1 ]
Rugh, HH [1 ]
机构
[1] UNIV WARWICK,DEPT MATH,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
关键词
D O I
10.1088/0951-7715/10/5/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a straightforward and reliable continuous method for computing the full or partial Lyapunov spectrum associated with a dynamical system specified by a set of differential-equations. We do this by introducing a stability parameter beta > 0 and augmenting the dynamical system with an orthonormal k-dimensional frame and a Lyapunov vector such that the frame is continuously Gram-Schmidt orthonormalized and at most linear growth of the dynamical variables is involved. We prove that the method is strongly stable when beta > -lambda(k) where lambda(k) is the kth Lyapunov exponent in descending order and we show through examples how the method is implemented. It extends many previous results.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 1979, ERGODIC THEORY DIFFE
[2]  
BENNETIN G, 1976, PHYS REV A, V14, P2338
[3]   LYAPUNOV EXPONENTS FOR MULTIDIMENSIONAL ORBITS [J].
FROYLAND, J .
PHYSICS LETTERS A, 1983, 97 (1-2) :8-10
[4]   STABILITY AND LYAPUNOV STABILITY OF DYNAMIC-SYSTEMS - A DIFFERENTIAL APPROACH AND A NUMERICAL-METHOD [J].
GOLDHIRSCH, I ;
SULEM, PL ;
ORSZAG, SA .
PHYSICA D, 1987, 27 (03) :311-337
[5]   LYAPUNOV SPECTRA IN SU(2) LATTICE GAUGE-THEORY [J].
GONG, C .
PHYSICAL REVIEW D, 1994, 49 (05) :2642-2645
[6]   SYMPLECTIC CALCULATION OF LYAPUNOV EXPONENTS [J].
HABIB, S ;
RYNE, RD .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :70-73
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[10]  
Oseledets V.I., 1968, T MMO, V19, P179