Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase

被引:186
作者
Garcia-Viloca, M
Truhlar, DG [1 ]
Gao, JL
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/bi034824f
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have studied the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) and the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH); the substrate is 5-protonated 7,8-dihydrofolate, and the product is tetrahydrofolate. The potential energy surface is modeled by a combined quantum mechanical-molecular mechanical (QM/MM) method employing Austin model I (AMI) and a simple valence bond potential for 69 QM atoms and employing the CHARMM22 and TIP3P molecular mechanics force fields for the other 21 399 atoms; the QM and MM regions are joined by two boundary atoms treated by the generalized hybrid orbital (GHO) method. All simulations are carried out using periodic boundary conditions at neutral pH and 298 K. In stage 1, a reaction coordinate is defined as the difference between the breaking and forming bond distances to the hydride ion, and a quasithermodynamic free energy profile is calculated along this reaction coordinate. This calculation includes quantization effects on bound vibrations but not on the reaction coordinate, and it is used to locate the variational transition state that defines a transition state ensemble. Then, the key interactions at the reactant, variational transition state, and product are analyzed in terms of both bond distances and electrostatic energies. The results of both analyses support the conclusion derived from previous mutational studies that the M20 loop of DHFR makes an important contribution to the electrostatic stabilization of the hydride transfer transition state. Third, transmission coefficients (including recrossing factors and multidimensional tunneling) are calculated and averaged over the transition state ensemble. These averaged transmission coefficients, combined with the quasithermodynamic free energy profile determined in stage 1, allow us to calculate rate constants, phenomenological free energies of activation, and primary and secondary kinetic isotope effects. A primary kinetic isotope effect (KIE) of 2.8 has been obtained, in good agreement with the experimentally determined value of 3.0 and with the value 3.2 calculated previously. The primary KIE is mainly a consequence of the quantization of bound vibrations. In contrast, the secondary KIE, with a value of 1.13, is almost entirely due to dynamical effects on the reaction coordinate, especially tunneling.
引用
收藏
页码:13558 / 13575
页数:18
相关论文
共 119 条
[1]   Toward reliable adiabatic connection models free from adjustable parameters [J].
Adamo, C ;
Barone, V .
CHEMICAL PHYSICS LETTERS, 1997, 274 (1-3) :242-250
[2]   Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Hammes-Schiffer, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3283-3293
[3]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[4]   Canonical variational theory for enzyme kinetics with the protein mean force and multidimensional quantum mechanical tunneling dynamics.: Theory and application to liver alcohol dehydrogenase [J].
Alhambra, C ;
Corchado, J ;
Sánchez, ML ;
Garcia-Viloca, M ;
Gao, J ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11326-11340
[5]   Quantum mechanical dynamical effects in an enzyme-catalyzed proton transfer reaction [J].
Alhambra, C ;
Gao, JL ;
Corchado, JC ;
Villà, J ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (10) :2253-2258
[6]   Quantum mechanical tunneling in methylamine dehydrogenase (vol 347, pg 512, 2001) [J].
Alhambra, C ;
Sánchez, ML ;
Corchado, JC ;
Gao, J ;
Truhlar, DG .
CHEMICAL PHYSICS LETTERS, 2002, 355 (3-4) :388-394
[7]  
ALHAMBRA C, CHARMMRATE VERSION 1
[8]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[9]   Predicting rare events in molecular dynamics [J].
Anderson, JB .
ADVANCES IN CHEMICAL PHYSICS, VOL 91, 1995, 91 :381-431
[10]   Molecular mechanism of HCl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations [J].
Ando, K ;
Hynes, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (49) :10464-10478