Penalized estimating functions and variable selection in semiparametric regression models

被引:134
作者
Johnson, Brent A. [1 ]
Lin, D. Y. [2 ]
Zeng, Donglin [2 ]
机构
[1] Emory Univ, Dept Biostat, Atlanta, GA 30322 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
accelerated failure time model; Buckley-James estimator; censoring; least absolute shrinkage and selection operator; least squares; linear regression; missing data; smoothly clipped absolute deviation;
D O I
10.1198/016214508000000184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pertain to the derivatives of any objective functions and may be discrete in the regression coefficients. We establish a general asymptotic theory for penalized estimating functions and present suitable numerical algorithms to implement the proposed estimators. In addition, we develop a resampling technique to estimate the variances of the estimated regression coefficients when the asymptotic variances cannot be evaluated directly. Simulation studies demonstrate that the proposed methods perform well in variable selection and variance estimation. We illustrate our methods using data from the Paul Coverdell Stroke Registry.
引用
收藏
页码:672 / 680
页数:9
相关论文
共 33 条
[1]  
[Anonymous], SEMIPARAMETRIC THEOR
[2]   Acute stroke care in the US - Results from 4 pilot prototypes of the Paul Coverdell National Acute Stroke Registry [J].
Arora, S ;
Broderick, JP ;
Frankel, M ;
Heinrich, JP ;
Hickenbottom, S ;
Karp, H ;
LaBresh, KA ;
Malarcher, A ;
Mensah, G ;
Moomaw, CJ ;
Reeves, MJ ;
Schwamm, L ;
Weiss, P .
STROKE, 2005, 36 (06) :1232-1240
[3]  
BUCKLEY J, 1979, BIOMETRIKA, V66, P429
[4]   Vairiable selection for multivariate failure time data [J].
Cai, JW ;
Fan, JQ ;
Li, RZ ;
Zhou, HB .
BIOMETRIKA, 2005, 92 (02) :303-316
[5]  
COX DR, 1972, J R STAT SOC B, V34, P187
[6]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[7]  
Fan JQ, 2002, ANN STAT, V30, P74
[8]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[9]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[10]  
FU W.J., 2003, BIOMETRICS, V35, P109