Telomere structure and shortening in telomerase-deficient Trypanosoma brucei

被引:43
作者
Dreesen, O [1 ]
Li, BB [1 ]
机构
[1] Rockefeller Univ, Mol Parasitol Lab, New York, NY 10021 USA
关键词
D O I
10.1093/nar/gki769
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomerase consists of a reverse transcriptase (TERT) and an RNA that contains a template for telomere-repeat extension. Telomerase is required to prevent telomere erosion and its activity or lack thereof is important for tumorigenesis and ageing. Telomerase has been identified in numerous organisms but it has not been studied in kinetoplastid protozoa. Trypanosoma brucei, the causative agent of African sleeping sickness, evades the host immune response by frequently changing its variant surface glycoprotein (VSG). The single expressed VSG is transcribed from one of similar to 20 subtelomeric 'Expression Sites', but the role telomeres might play in regulating VSG transcription and switching is unknown. We identified and sequenced the T.brucei TERT gene. Deleting TERT resulted in progressive telomere shortening of 3-6 bp per generation. In other organisms, the rate of telomere shortening is proportional to the length of the terminal 3' single-strand overhang. In T.brucei, G-overhangs were undetectable (< 30 nt) by in-gel hybridization. The rate of telomere shortening therefore, agrees with the predicted shortening due to the end replication problem, and is consistent with our observation that G-overhangs are short. Trypanosomes whose telomere length can be manipulated provide a new tool to investigate the role of telomeres in antigenic variation.
引用
收藏
页码:4536 / 4543
页数:8
相关论文
共 50 条
[1]   GROWTH OF CHROMOSOME ENDS IN MULTIPLYING TRYPANOSOMES [J].
BERNARDS, A ;
MICHELS, PAM ;
LINCKE, CR ;
BORST, P .
NATURE, 1983, 303 (5918) :592-597
[2]   ACTIVATION OF TRYPANOSOME SURFACE GLYCOPROTEIN GENES INVOLVES A DUPLICATION-TRANSPOSITION LEADING TO AN ALTERED 3' END [J].
BERNARDS, A ;
VANDERPLOEG, LHT ;
FRASCH, ACC ;
BORST, P ;
BOOTHROYD, JC ;
COLEMAN, S ;
CROSS, GAM .
CELL, 1981, 27 (03) :497-505
[3]   Telomere looping in P-sativum (common garden pea) [J].
Cesare, AJ ;
Quinney, N ;
Willcox, S ;
Subramanian, D ;
Griffith, JD .
PLANT JOURNAL, 2003, 36 (02) :271-279
[4]   Long telomeric C-rich 5′-tails in human replicating cells [J].
Cimino-Reale, G ;
Pascale, E ;
Alvino, E ;
Starace, G ;
D'Ambrosio, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (04) :2136-2140
[5]   The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex [J].
Collins, K ;
Gandhi, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8485-8490
[6]   TELOMERASE ACTIVITY IN HUMAN OVARIAN-CARCINOMA [J].
COUNTER, CM ;
HIRTE, HW ;
BACCHETTI, S ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :2900-2904
[7]   T-loops and the origin of telomeres [J].
de Lange, T .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (04) :323-329
[8]   Protection of mammalian telomeres [J].
de Lange, T .
ONCOGENE, 2002, 21 (04) :532-540
[10]   GENOMIC ENVIRONMENT OF THE EXPRESSION-LINKED EXTRA COPIES OF GENES FOR SURFACE-ANTIGENS OF TRYPANOSOMA-BRUCEI RESEMBLES THE END OF A CHROMOSOME [J].
DELANGE, T ;
BORST, P .
NATURE, 1982, 299 (5882) :451-453