Domain walls without cosmological constant in higher order gravity

被引:55
作者
Meissner, KA [1 ]
Olechowski, M [1 ]
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
关键词
D O I
10.1103/PhysRevLett.86.3708
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a class of higher order corrections in the form of Euler densities of arbitrary rank n to the standard gravity action in D dimensions. We present a generating functional and an explicit form of the conserved energy -momentum tensors. We show that this class of corrections allows for. domain-wall solutions despite the presence of higher; powers of the curvature. The existence of such solutions no longer depends on the presence of cosmological constants. For example, the Randall-Sundrum-type scenario can be realized without bulk and/or brane cosmslogical constant.
引用
收藏
页码:3708 / 3711
页数:4
相关论文
共 20 条
[11]   EINSTEIN TENSOR AND ITS GENERALIZATIONS [J].
LOVELOCK, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :498-&
[12]   Naked singularity and Gauss-Bonnet term in brane world scenarios [J].
Low, I ;
Zee, A .
NUCLEAR PHYSICS B, 2000, 585 (1-2) :395-404
[13]   String-inspired higher-curvature terms and the Randall-Sundrum scenario - art. no. 124004 [J].
Mavromatos, NE ;
Rizos, J .
PHYSICAL REVIEW D, 2000, 62 (12) :1-11
[14]   Symmetries of higher-order string gravity actions [J].
Meissner, KA .
PHYSICS LETTERS B, 1997, 392 (3-4) :298-304
[15]   ORDER-ALPHA' (2-LOOP) EQUIVALENCE OF THE STRING EQUATIONS OF MOTION AND THE SIGMA-MODEL WEYL INVARIANCE CONDITIONS - DEPENDENCE ON THE DILATON AND THE ANTISYMMETRIC TENSOR [J].
METSAEV, RR ;
TSEYTLIN, AA .
NUCLEAR PHYSICS B, 1987, 293 (02) :385-419
[16]  
Neupane IP, 2000, J HIGH ENERGY PHYS
[17]   Brane world inflation induced by quantum effects [J].
Nojiri, S ;
Odintsov, SD .
PHYSICS LETTERS B, 2000, 484 (1-2) :119-123
[18]  
Nojiri S, 2000, J HIGH ENERGY PHYS
[19]   An alternative to compactification [J].
Randall, L ;
Sundrum, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (23) :4690-4693
[20]   A NEW TYPE OF ISOTROPIC COSMOLOGICAL MODELS WITHOUT SINGULARITY [J].
STAROBINSKY, AA .
PHYSICS LETTERS B, 1980, 91 (01) :99-102