Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content -: art. no. r67

被引:147
作者
Haddrill, PR
Charlesworth, B
Halligan, DL [1 ]
Andolfatto, P
机构
[1] Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland
[2] Univ Calif San Diego, Div Biol Sci, Sect Ecol Behav & Evolut, La Jolla, CA 92093 USA
关键词
D O I
10.1186/gb-2005-6-8-r67
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Introns comprise a large fraction of eukaryotic genomes, yet little is known about their functional significance. Regulatory elements have been mapped to some introns, though these are believed to account for only a small fraction of genome wide intronic DNA. No consistent patterns have emerged from studies that have investigated general levels of evolutionary constraint in introns. Results: We examine the relationship between intron length and levels of evolutionary constraint by analyzing inter-specific divergence at 225 intron fragments in Drosophila melanogaster and Drosophila simulans, sampled from a broad distribution of intron lengths. We document a strongly negative correlation between intron length and divergence. Interestingly, we also find that divergence in introns is negatively correlated with GC content. This relationship does not account for the correlation between intron length and divergence, however, and may simply reflect local variation in mutational rates or biases. Conclusion: Short introns make up only a small fraction of total intronic DNA in the genome. Our finding that long introns evolve more slowly than average implies that, while the majority of introns in the Drosophila genome may experience little or no selective constraint, most intronic DNA in the genome is likely to be evolving under considerable constraint. Our results suggest that functional elements may be ubiquitous within longer introns and that these introns may have a more general role in regulating gene expression than previously appreciated. Our finding that GC content and divergence are negatively correlated in introns has important implications for the interpretation of the correlation between divergence and levels of codon bias observed in Drosophila.
引用
收藏
页数:8
相关论文
共 59 条
[1]  
AKASHI H, 1994, GENETICS, V136, P927
[2]  
Akashi H, 1996, GENETICS, V144, P1297
[3]   Regulation of the expression of the sn-glycerol-3-phosphate dehydrogenase gene in Drosophila melanogaster [J].
Bartoszewski, S ;
Gibson, JB .
BIOCHEMICAL GENETICS, 1998, 36 (9-10) :329-350
[4]  
Berezikov E, 2004, GENOME RES, V14, P170
[5]   Drosophila DNase I footprint database:: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster [J].
Bergman, CM ;
Carlson, JW ;
Celniker, SE .
BIOINFORMATICS, 2005, 21 (08) :1747-1749
[6]   Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences [J].
Bergman, CM ;
Kreitman, M .
GENOME RESEARCH, 2001, 11 (08) :1335-1345
[7]   Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome [J].
Berman, BP ;
Nibu, Y ;
Pfeiffer, BD ;
Tomancak, P ;
Celniker, SE ;
Levine, M ;
Rubin, GM ;
Eisen, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :757-762
[8]   Linkage limits the power of natural selection in Drosophila [J].
Betancourt, AJ ;
Presgraves, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (21) :13616-13620
[9]  
Bierne N, 2003, GENETICS, V165, P1587
[10]  
Carlini DB, 2001, GENETICS, V159, P623