Infrared Nanoscopy of Dirac Plasmons at the Graphene-SiO2 Interface

被引:514
作者
Fei, Zhe [1 ]
Andreev, Gregory O. [1 ]
Bao, Wenzhong [2 ]
Zhang, Lingfeng M. [1 ,3 ]
McLeod, Alexander S. [1 ]
Wang, Chen [4 ]
Stewart, Margaret K. [1 ]
Zhao, Zeng [2 ]
Dominguez, Gerardo [5 ]
Thiemens, Mark [4 ]
Fogler, Michael M. [1 ]
Tauber, Michael J. [4 ]
Castro-Neto, Antonio H. [6 ,7 ]
Lau, Chun Ning [2 ]
Keilmann, Fritz [8 ,9 ]
Basov, Dimitri N. [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
[4] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[5] Calif State Univ, Dept Phys, San Marcos, CA 92096 USA
[6] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore
[7] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[8] Max Planck Inst Quantum Opt, D-85714 Garching, Germany
[9] Ctr NanoSci, D-85714 Garching, Germany
关键词
Graphene; Dirac plasmon; infrared nanoscopy; near-field microscopy;
D O I
10.1021/nl202362d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.
引用
收藏
页码:4701 / 4705
页数:5
相关论文
共 37 条
[1]   Substrate-enhanced infrared near-field spectroscopy [J].
Aizpurua, Javier ;
Taubner, Thomas ;
Javier Garcia de Abajo, F. ;
Brehm, Markus ;
Hillenbrand, Rainer .
OPTICS EXPRESS, 2008, 16 (03) :1529-1545
[2]   Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy [J].
Amarie, S. ;
Keilmann, F. .
PHYSICAL REVIEW B, 2011, 83 (04)
[3]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[4]   Electrodynamics of correlated electron materials [J].
Basov, D. N. ;
Averitt, Richard D. ;
van der Marel, Dirk ;
Dressel, Martin ;
Haule, Kristjan .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :471-541
[5]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[7]   Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy [J].
Cvitkovic, A. ;
Ocelic, N. ;
Hillenbrand, R. .
OPTICS EXPRESS, 2007, 15 (14) :8550-8565
[8]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[9]   Complex optical constants on a subwavelength scale [J].
Hillenbrand, R ;
Keilmann, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (14) :3029-3032
[10]   Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe [J].
Hillenbrand, R ;
Keilmann, F ;
Hanarp, P ;
Sutherland, DS ;
Aizpurua, J .
APPLIED PHYSICS LETTERS, 2003, 83 (02) :368-370