Substrate-enhanced infrared near-field spectroscopy

被引:102
作者
Aizpurua, Javier [1 ]
Taubner, Thomas [2 ,3 ]
Javier Garcia de Abajo, F. [4 ]
Brehm, Markus [5 ]
Hillenbrand, Rainer [3 ,6 ]
机构
[1] Donostia Int Phys Ctr, San Sebastian 20018, Spain
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Max Planck Inst Biochem, Nanophoton Grp, D-82152 Martinsried, Germany
[4] CSIC, Inst Opt, E-28006 Madrid, Spain
[5] Max Planck Inst Biochem, Abt Mol Strukturbiol, D-82152 Martinsried, Germany
[6] CIC NanoGUNE Consolider, Donostia San Sebastian 20009, Spain
来源
OPTICS EXPRESS | 2008年 / 16卷 / 03期
关键词
D O I
10.1364/OE.16.001529
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the amplitude and phase signals detected in infrared scattering-type near field optical microscopy (s-SNOM) when probing a thin sample layer on a substrate. We theoretically describe this situation by solving the electromagnetic scattering of a dipole near a planar sample consisting of a substrate covered by thin layers. We perform calculations to describe the effect of both weakly (Si and SiO2) and strongly (Au) reflecting substrates on the spectral s-SNOM signal of a thin PMMA layer. We theoretically predict, and experimentally confirm an enhancement effect in the polymer vibrational spectrum when placed on strongly reflecting substrates. We also calculate the scattered fields for a resonant tip-substrate interaction, obtaining a dramatic enhancement of the signal amplitude and spectroscopic contrast of the sample layer, together with a change of the spectral line shape. The enhanced contrast opens the possibility to perform ultra-sensitive near field infrared spectroscopy of monolayers and biomolecules. (c) 2008 Optical Society of America.
引用
收藏
页码:1529 / 1545
页数:17
相关论文
共 49 条
[1]   Monolayer-sensitive infrared imaging of DNA stripes using apertureless near-field microscopy [J].
Akhremitchev, BB ;
Sun, YJ ;
Stebounova, L ;
Walker, GC .
LANGMUIR, 2002, 18 (14) :5325-5328
[2]   Apertureless scanning near-field infrared microscopy of a rough polymeric surface [J].
Akhremitchev, BB ;
Pollack, S ;
Walker, GC .
LANGMUIR, 2001, 17 (09) :2774-2781
[3]  
Anderson MS, 2003, APPL PHYS LETT, V83, P2964, DOI [10.1063/1.1615317, 10.1063/1.1615311]
[4]   Subsurface Raman imaging with nanoscale resolution [J].
Anderson, N ;
Anger, P ;
Hartschuh, A ;
Novotny, L .
NANO LETTERS, 2006, 6 (04) :744-749
[5]   Near-field photonics: tip-enhanced microscopy and spectroscopy on the nanoscale [J].
Anderson, Neil ;
Bouhelier, Alexandre ;
Novotny, Lukas .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (04) :S227-S233
[6]   Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy [J].
Bachelot, R ;
Lerondel, G ;
Blaize, S ;
Aubert, S ;
Bruyant, A ;
Royer, P .
MICROSCOPY RESEARCH AND TECHNIQUE, 2004, 64 (5-6) :441-452
[7]   On the modulation of optical transmission spectra of thin dye layers by a supporting medium [J].
Bortchagovsky, EG ;
Fischer, UC .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (11) :5384-5392
[8]  
BREHM M, 2006, THESIS TU MNCHEN
[9]   Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution [J].
Brehm, Markus ;
Taubner, Thomas ;
Hillenbrand, Rainer ;
Keilmann, Fritz .
NANO LETTERS, 2006, 6 (07) :1307-1310
[10]   Controlling the Fano interference in a plasmonic lattice [J].
Christ, A. ;
Ekinci, Y. ;
Solak, H. H. ;
Gippius, N. A. ;
Tikhodeev, S. G. ;
Martin, O. J. F. .
PHYSICAL REVIEW B, 2007, 76 (20)