Error estimates for finite difference methods for a wide-angle ''parabolic'' equation

被引:11
作者
Akrivis, GD
Dougalis, VA
Zouraris, GE
机构
[1] UNIV ATHENS,INST MATH,GR-15784 ATHENS,GREECE
[2] UNIV CRETE,DEPT MATH,GR-71409 IRAKLION,GREECE
[3] FDN RES & TECHNOL HELLAS,INST APPL & COMP MATH,GR-71110 IRAKLION,GREECE
关键词
wide-angle ''parabolic'' equation; underwater acoustics; finite difference error estimates; interface problems;
D O I
10.1137/S0036142994266352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model initial and boundary value problem for a third-order partial differential equation (PDE), a wide-angle ''parabolic'' equation frequently used in underwater acoustics, with depth- and range-dependent coefficients in the presence of horizontal interfaces and dissipation. After commenting on the existence-uniqueness theory of solution of the equation, we discretize the problem by a second-order finite difference method of Crank-Nicolson type for which we prove stability and optimal-order error estimates in suitable discrete L(2)-, H-1- and maximum norms. We also prove, under certain conditions, that the forward Euler scheme is also stable and convergent for the problem at hand.
引用
收藏
页码:2488 / 2509
页数:22
相关论文
共 32 条
[1]  
Akrivis G. D., 1994, Journal of Computational Acoustics, V2, P99, DOI 10.1142/S0218396X94000087
[2]  
AKRIVIS GD, 1991, MATH COMPUT, V56, P505, DOI 10.1090/S0025-5718-1991-1066829-7
[3]   ERROR-ESTIMATES FOR FINITE-ELEMENT METHODS FOR A WIDE-ANGLE PARABOLIC EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KAMPANIS, NA .
APPLIED NUMERICAL MATHEMATICS, 1994, 16 (1-2) :81-100
[4]  
AKRIVIS GD, 1993, COMPUTATIONAL ACOUST, V2, P209
[5]  
ARNOLD DN, 1981, MATH COMPUT, V36, P53, DOI 10.1090/S0025-5718-1981-0595041-4
[6]   HIGHER-ORDER PARAXIAL WAVE-EQUATION APPROXIMATIONS IN HETEROGENEOUS MEDIA [J].
BAMBERGER, A ;
ENGQUIST, B ;
HALPERN, L ;
JOLY, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (01) :129-154
[7]   PARABOLIC WAVE-EQUATION APPROXIMATIONS IN HETEROGENEOUS MEDIA [J].
BAMBERGER, A ;
ENGQUIST, B ;
HALPERN, L ;
JOLY, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (01) :99-128
[8]  
BOTSEAS G, 1983, 6905 NAV UND SYST CT
[9]  
BOTSEAS G, 1987, 7943 NAV UND SYST CT
[10]  
BROCK HK, 1978, 12 NSTL STAT NAV OC