Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling

被引:168
作者
Robinson, DR
McNaughton, PA
Evans, ML
Hicks, GA
机构
[1] GlaxoSmithKline Res & Dev Ltd, Neurol & GI Ctr Excellence Drug Discovery, Harlow CM19 5AW, Essex, England
[2] Univ Cambridge, Dept Pharmacol, Cambridge CB2 1QJ, England
关键词
descending colon; dorsal root ganglion; immunohistochemistry; primary spinal afferent; retrograde labelling; visceral pain;
D O I
10.1046/j.1365-2982.2003.00456.x
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Visceral pain is the most common form of pain produced by disease and is thus of interest in the study of gastrointestinal (GI) complaints such as irritable bowel syndrome, in which sensory signals perceived as GI pain travel in extrinsic afferent neurones with cell bodies in the dorsal root ganglia (DRG). The DRG from which the primary spinal afferent innervation of the mouse descending colon arises are not well defined. This study has combined retrograde labelling and immunohistochemistry to identify and characterize these neurones. Small to medium-sized retrogradely labelled cell bodies were found in the DRG at levels T8-L1 and L6-S1. Calcitonin gene-related peptide (CGRP)- and P2X(3)-like immunoreactivity (LI) was seen in 81 and 32%, respectively, of retrogradely labelled cells, and 20% bound the Griffonia simplicifolia-derived isolectin IB4. CGRP-LI and IB4 were co-localized in 22% of retrogradely labelled cells, whilst P2X(3)-LI and IB4 were co-localized in 7% (vs 34% seen in the whole DRG population). Eighty-two per cent of retrogradely labelled cells exhibited vanilloid receptor 1-like immunoreactivity (VR1-LI). These data suggest that mouse colonic spinal primary afferent neurones are mostly peptidergic CGRP-containing, VR1-LI, C fibre afferents. In contrast to the general DRG population, a subset of neurones exist that are P2X(3) receptor-LI but do not bind IB4.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 47 条
[1]  
ABELLI L, 1988, N-S ARCH PHARMACOL, V337, P545
[2]   IMMUNOCYTOCHEMICAL LOCALIZATION OF TRKA RECEPTORS IN CHEMICALLY IDENTIFIED SUBGROUPS OF ADULT-RAT SENSORY NEURONS [J].
AVERILL, S ;
MCMAHON, SB ;
CLARY, DO ;
REICHARDT, LF ;
PRIESTLEY, JV .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (07) :1484-1494
[3]   trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat [J].
Bennett, DL ;
Dmietrieva, N ;
Priestley, JV ;
Clary, D ;
McMahon, SB .
NEUROSCIENCE LETTERS, 1996, 206 (01) :33-36
[4]   Neuropeptides, nitric oxide synthase and GAP-43 in B4-binding and RT97 immunoreactive primary sensory neurons:: normal distribution pattern and changes after peripheral nerve transection and aging [J].
Bergman, E ;
Carlsson, K ;
Liljeborg, A ;
Manders, E ;
Hökfelt, T ;
Ulfhake, B .
BRAIN RESEARCH, 1999, 832 (1-2) :63-83
[5]   Pain hypersensitivity in patients with functional gastrointestinal disorders - A gastrointestinal-specific defect or a general systemic condition? [J].
Bouin, M ;
Meunier, P ;
Riberdy-Poitras, M ;
Poitras, P .
DIGESTIVE DISEASES AND SCIENCES, 2001, 46 (11) :2542-2548
[6]   The expression of P2X3 purinoreceptors in sensory neurons:: Effects of axotomy and glial-derived neurotrophic factor [J].
Bradbury, EJ ;
Burnstock, G ;
McMahon, SB .
MOLECULAR AND CELLULAR NEUROSCIENCE, 1998, 12 (4-5) :256-268
[7]   Purine-mediated signalling in pain and visceral perception [J].
Burnstock, G .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (04) :182-188
[8]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[9]   Sense and specificity: a molecular identity far nociceptors [J].
Caterina, MJ ;
Julius, D .
CURRENT OPINION IN NEUROBIOLOGY, 1999, 9 (05) :525-530
[10]   SENSORY INNERVATION OF THE VISCERA - PERIPHERAL BASIS OF VISCERAL PAIN [J].
CERVERO, F .
PHYSIOLOGICAL REVIEWS, 1994, 74 (01) :95-138