Tuned graft copolymers as controlled coatings for DNA microarrays

被引:21
作者
De Paul, SM
Falconnet, D
Pasche, S
Textor, M
Abel, AP
Kauffmann, E
Liedtke, R
Ehrat, M
机构
[1] ETH, Swiss Fed Inst Technol, Dept Mat, Surface Sci & Technol Lab, CH-8093 Zurich, Switzerland
[2] Zeptosens AG, CH-4108 Witterswil, Switzerland
关键词
D O I
10.1021/ac0504666
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
DNA microarrays have become a powerful tool for expression profiling and other genomics applications. A critical factor for their sensitivity is the interfacial coating between the chip substrate and the bound DNA. Such a coating has to embrace the divergent requirements of tightly binding the capture probe DNA during the spotting process and of minimizing the nonspecific binding,of target DNA during the hybridization assay. To fulfill these conditions, most coatings require a passivation step. Here we demonstrate how the chain density of a graft copolymer with a polycationic backbone, poly(L-lysine)-graft-poly(ethylene glycol), can be tuned such that the binding capacity during capture probe deposition is maximized while the nonspecific binding during hybridization assays is kept to a minimum, thus alleviating the requirement for a separate passivation procedure. Evidence for the superior performance of such coatings in terms of signal-to-noise ratio and spot quality is presented using an evanescent field-based fluorescent sensing technique (the ZeptoREADER). The surface architecture is further characterized using optical waveguide lightmode spectroscopy and time-of-flight secondary ion mass spectrometry. Finally, in a model assay, we demonstrate that expression changes can be detected from 1 mu g of total mRNA sample material with a limit of detectable differential expression of +/- 1.5.
引用
收藏
页码:5831 / 5838
页数:8
相关论文
共 39 条
[1]   Toward optimized antibody microarrays:: a comparison of current microarray support materials [J].
Angenendt, P ;
Glökler, J ;
Murphy, D ;
Lehrach, H ;
Cahill, DJ .
ANALYTICAL BIOCHEMISTRY, 2002, 309 (02) :253-260
[2]   FORMATION OF MONOLAYER FILMS BY THE SPONTANEOUS ASSEMBLY OF ORGANIC THIOLS FROM SOLUTION ONTO GOLD [J].
BAIN, CD ;
TROUGHTON, EB ;
TAO, YT ;
EVALL, J ;
WHITESIDES, GM ;
NUZZO, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (01) :321-335
[3]   FABRICATION OF SURFACES RESISTANT TO PROTEIN ADSORPTION AND APPLICATION TO 2-DIMENSIONAL PROTEIN PATTERNING [J].
BHATIA, SK ;
TEIXEIRA, JL ;
ANDERSON, M ;
SHRIVERLAKE, LC ;
CALVERT, JM ;
GEORGER, JH ;
HICKMAN, JJ ;
DULCEY, CS ;
SCHOEN, PE ;
LIGLER, FS .
ANALYTICAL BIOCHEMISTRY, 1993, 208 (01) :197-205
[4]   ELLIPSOMETRY AS A TOOL TO STUDY ADSORPTION BEHAVIOR OF SYNTHETIC AND BIOPOLYMERS AT AIR-WATER-INTERFACE [J].
DEFEIJTER, JA ;
BENJAMINS, J ;
VEER, FA .
BIOPOLYMERS, 1978, 17 (07) :1759-1772
[5]  
DEPAUL SM, 2002, 17 WORLD C BIOS KY J
[6]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[7]   Manufacturing DNA microarrays of high spot homogeneity and reduced background signal [J].
Diehl, Frank ;
Grahlmann, Susanne ;
Beier, Markus ;
Hoheisel, Joerg D. .
NUCLEIC ACIDS RESEARCH, 2001, 29 (07)
[8]   Expression profiling using cDNA microarrays [J].
Duggan, DJ ;
Bittner, M ;
Chen, YD ;
Meltzer, P ;
Trent, JM .
NATURE GENETICS, 1999, 21 (Suppl 1) :10-14
[9]   Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids [J].
Duveneck, GL ;
Abel, AP ;
Bopp, MA ;
Kresbach, GM ;
Ehrat, M .
ANALYTICA CHIMICA ACTA, 2002, 469 (01) :49-61
[10]  
Ehrat M, 1997, CHIMIA, V51, P705