Combined effects of environmental vibrations and hygrothermal fatigue on mechanical damage in PEM fuel cells

被引:54
作者
Banan, Roshanak [1 ,2 ]
Bazylak, Aimy [1 ]
Zu, Jean [2 ]
机构
[1] Univ Toronto, Fac Appl Sci & Engn, Dept Mech & Ind Engn, Thermofluids Energy & Adv Mat Lab, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Fac Appl Sci & Engn, Dept Mech & Ind Engn, Vibrat Design & Mechatron Lab, Toronto, ON M5S 3G8, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Vibration; Damage propagation; Humidity and temperature cycles; Fatigue; Polymer electrolyte membrane fuel cell; Cohesive elements; POLYMER ELECTROLYTE MEMBRANE; PROTON-EXCHANGE MEMBRANES; GAS-DIFFUSION LAYERS; CATALYST LAYERS; PART I; BEHAVIOR; STACK; DEGRADATION; DURABILITY; DELAMINATION;
D O I
10.1016/j.ijhydene.2014.11.125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Automotive polymer electrolyte membrane (PEM) fuel cells are exposed to high magnitude road-induced impact loads and vibrations as well as high-level cyclic stresses due to humidity and temperature (hygrothermal) variations. The consequent plastic strain can exacerbate defects and may result in operational failure. In this study, a two-dimensional finite element model based on cohesive zone theory was employed to investigate the combined effects of hygrothermal cycle amplitude and amplitude and frequency of external vibrations on damage propagation. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation within the expected fuel cell lifetime. Compared with applied vibrations, hygrothermal cycles produced a dominating effect on degradation. Under hygrothermal cycling, membrane cracks experienced more severe propagation compared to delaminations, while vibrations had a more significant effect on delaminations compared to cracks. The presence of a channel offset led to a 2.5-fold increase in delamination length compared to a case with no channel offset. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1911 / 1922
页数:12
相关论文
共 50 条
[31]   Microstructure changes induced by capillary condensation in catalyst layers of PEM fuel cells [J].
Ma, Liang ;
Liu, Zhong-Sheng ;
Huang, Cheng ;
Chen, Su-Huan ;
Meng, Guang-Wei .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (22) :12182-12190
[32]  
Makhariaa R., 2006, ECS T, V1, P3, DOI DOI 10.1149/1.2214540
[33]   A review of polymer electrolyte membrane fuel cell stack testing [J].
Miller, M. ;
Bazylak, A. .
JOURNAL OF POWER SOURCES, 2011, 196 (02) :601-613
[34]   Simulation and experimental validation of mixed mode delamination in multidirectional CF/PEEK laminates under fatigue loading [J].
Naghipour, P. ;
Bartsch, M. ;
Voggenreiter, H. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (06) :1070-1081
[35]  
Paris P.C., 1961, The Trend in Engineering, V13, P9, DOI DOI 10.11648/J.IJMEA.S.2015030201.11
[36]   The Effect of Mechanical Fatigue on the Lifetimes of Membrane Electrode Assemblies [J].
Pestrak, Michael ;
Li, Yongqiang ;
Case, Scott W. ;
Dillard, David A. ;
Ellis, Michael W. ;
Lai, Yeh-Hung ;
Gittleman, Craig S. .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2010, 7 (04) :0410091-04100910
[37]   Gradation of mechanical properties in gas-diffusion electrode. Part 2: Heterogeneous carbon fiber and damage evolution in cell layers [J].
Poornesh, K. K. ;
Cho, C. D. ;
Lee, G. B. ;
Tak, Y. S. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2718-2730
[38]   Gradation of mechanical properties in gas diffusion electrode. Part 1: Influence of nano-scale heterogeneity in catalyst layer on interfacial strength between catalyst layer and membrane [J].
Poornesh, K. K. ;
Cho, C. D. ;
Lee, G. B. ;
Tak, Y. S. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2709-2717
[39]   Vibration tests on a PEM fuel cell stack usable in transportation application [J].
Rajalakshmi, N. ;
Pandian, S. ;
Dhathathreyan, K. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :3833-3837
[40]   Heterogeneous through-plane distributions of polytetrafluoroethylene in polymer electrolyte membrane fuel cell gas diffusion layers [J].
Rofaiel, A. ;
Ellis, J. S. ;
Challa, P. R. ;
Bazylak, A. .
JOURNAL OF POWER SOURCES, 2012, 201 :219-225