Interaction between acetylated MyoD and the bromodomain of CBP and/or p300

被引:80
作者
Polesskaya, A
Naguibneva, I
Duquet, A
Bengal, E
Robin, P
Harel-Bellan, A
机构
[1] Inst Andre Lwoff, Lab Differenciat & Transduct Signal, CNRS, UPR 9079, Villejuif, France
[2] Technion Israel Inst Technol, Dept Biochem, IL-31096 Haifa, Israel
关键词
D O I
10.1128/MCB.21.16.5312-5320.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acetylation is emerging as a posttranslational modification of nuclear proteins that is essential to the regulation of transcription and that modifies transcription factor affinity for binding sites on DNA, stability, and/or nuclear localization. Here, we present both in vitro and in vivo evidence that acetylation increases the affinity of myogenic factor MyoD for acetyltransferases CBP and p300. In myogenic cells, the fraction of endogenous MyoD that is acetylated was found associated with CBP or p300. In vitro, the interaction between MyoD and CBP was more resistant to high salt concentrations and was detected with lower doses of MyoD when MyoD was acetylated. Interestingly, an analysis of CBP mutants revealed that the interaction with acetylated MyoD involves the bromodomain of CBP. In live cells, MyoD mutants that cannot be acetylated did not associate with CBP or p300 and were strongly impaired in their ability to cooperate with CBP for transcriptional activation of a muscle creatine kinase-luciferase construct. Taken together, our data suggest a new mechanism for activation of protein function by acetylation and demonstrate for the first time an acetylation-dependent interaction between the bromodomain of CBP and a nonhistone protein.
引用
收藏
页码:5312 / 5320
页数:9
相关论文
共 44 条
[1]   A rapid and sensitive assay for histone acetyl-transferase activity [J].
Ait-Si-Ali, S ;
Ramirez, S ;
Robin, P ;
Trouche, D ;
Harel-Bellan, A .
NUCLEIC ACIDS RESEARCH, 1998, 26 (16) :3869-3870
[2]   Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A [J].
Ait-Si-Ali, S ;
Ramirez, S ;
Barre, FX ;
Dkhissi, F ;
Magnaghi-Jaulin, L ;
Girault, JA ;
Robin, P ;
Knibiehler, M ;
Pritchard, LL ;
Ducommun, B ;
Trouche, D ;
Harel-Bellan, A .
NATURE, 1998, 396 (6707) :184-186
[3]   The CBP co-activator is a histone acetyltransferase [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 1996, 384 (6610) :641-643
[4]   Protein acetylation: more than chromatin modification to regulate transcription [J].
Bayle, JH ;
Crabtree, GR .
CHEMISTRY & BIOLOGY, 1997, 4 (12) :885-888
[5]   Regulation of activity of the transcription factor GATA-1 by acetylation [J].
Boyes, J ;
Byfield, P ;
Nakatani, Y ;
Ogryzko, V .
NATURE, 1998, 396 (6711) :594-598
[6]   A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein [J].
Breitschopf, K ;
Bengal, E ;
Ziv, T ;
Admon, A ;
Ciechanover, A .
EMBO JOURNAL, 1998, 17 (20) :5964-5973
[7]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[8]   MAKING MUSCLE IN MAMMALS [J].
BUCKINGHAM, M .
TRENDS IN GENETICS, 1992, 8 (04) :144-149
[9]   PHOSPHORYLATED CREB BINDS SPECIFICALLY TO THE NUCLEAR-PROTEIN CBP [J].
CHRIVIA, JC ;
KWOK, RPS ;
LAMB, N ;
HAGIWARA, M ;
MONTMINY, MR ;
GOODMAN, RH .
NATURE, 1993, 365 (6449) :855-859
[10]   EXPRESSION OF A SINGLE TRANSFECTED CDNA CONVERTS FIBROBLASTS TO MYOBLASTS [J].
DAVIS, RL ;
WEINTRAUB, H ;
LASSAR, AB .
CELL, 1987, 51 (06) :987-1000