Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase

被引:307
作者
Münzel, T
Daiber, A
Ullrich, V
Mülsch, A
机构
[1] Mainz Kardiol & Angiol, Med Klin 2, Mainz, Germany
[2] Univ Konstanz, Fachbereich Biol, D-7750 Constance, Germany
关键词
endothelium; vasodilation; nitric oxide; endothelial NO-synthase; oxidative stress;
D O I
10.1161/01.ATV.0000168896.64927.bb
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolemia, hypertension, diabetes mellitus, chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species (ROS), such as the superoxide radical, and the subsequent decrease in vascular bioavailability of nitric oxide (NO). Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include the NAD(P)H oxidase, the xanthine oxidase, and mitochondrial superoxide-producing enzymes. Superoxide produced by the NADPH oxidase may react with NO released by endothelial nitric oxide synthase (eNOS), thereby generating peroxynitrite. Peroxynitrite in turn has been shown to uncouple eNOS, thereby switching an antiatherosclerotic NO-producing enzyme to an enzyme that may initiate or even accelerate the atherosclerotic process by producing superoxide. Increased oxidative stress in the vasculature, however, is not restricted to the endothelium and has also been demonstrated to occur within the smooth muscle cell layer in the setting of hypercholesterolemia, diabetes mellitus, hypertension, congestive heart failure, and nitrate tolerance. Increased superoxide production by the endothelial and/or smooth muscle cells has important consequences with respect to signaling by the soluble guanylyl cyclase (sGC) and the cGMP-dependent protein kinase I (cGK-I), the activity and expression of which has been shown to be regulated in a redox-sensitive fashion. The present review summarizes current concepts concerning eNOS uncoupling and also focuses on the consequences for downstream signaling with respect to activity and expression of the sGC and cGK-I in various diseases.
引用
收藏
页码:1551 / 1557
页数:7
相关论文
共 74 条
[1]   Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction [J].
Al Suwaidi, J ;
Hamasaki, S ;
Higano, ST ;
Nishimura, RA ;
Holmes, DR ;
Lerman, A .
CIRCULATION, 2000, 101 (09) :948-954
[2]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[3]   Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect [J].
Ballou, DP ;
Zhao, Y ;
Brandish, PE ;
Marletta, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12097-12101
[4]   ASSEMBLY AND REGULATION OF NADPH OXIDASE AND NITRIC-OXIDE SYNTHASE [J].
BASTIAN, NR ;
HIBBS, JB .
CURRENT OPINION IN IMMUNOLOGY, 1994, 6 (01) :131-139
[5]   Oxidative damage and tyrosine nitration from peroxynitrite [J].
Beckman, JS .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (05) :836-844
[6]   A VARIANT OF THE ALPHA(2) SUBUNIT OF SOLUBLE GUANYLYL CYCLASE CONTAINS AN INSERT HOMOLOGOUS TO A REGION WITHIN ADENYLYL CYCLASES AND FUNCTIONS AS A DOMINANT-NEGATIVE PROTEIN [J].
BEHRENDS, S ;
HARTENECK, C ;
SCHULTZ, G ;
KOESLING, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (36) :21109-21113
[7]   Cerebral expression of the α2-subunit of soluble guanylyl cyclase is linked to cerebral maturation and sensory pathway refinement during postnatal development [J].
Bidmon, HJ ;
Starbatty, J ;
Görg, B ;
Zilles, K ;
Behrends, S .
NEUROCHEMISTRY INTERNATIONAL, 2004, 45 (06) :821-832
[8]   LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells -: Involvement of S-adenosylmethionine-dependent methyltransferases [J].
Böger, RH ;
Sydow, K ;
Borlak, J ;
Thum, T ;
Lenzen, H ;
Schubert, B ;
Tsikas, D ;
Bode-Böger, SM .
CIRCULATION RESEARCH, 2000, 87 (02) :99-105
[9]   Regulation of NO synthesis in endothelial cells [J].
Busse, R ;
Fleming, I .
KIDNEY & BLOOD PRESSURE RESEARCH, 1998, 21 (2-4) :264-266
[10]   Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension [J].
Butler, R ;
Morris, AD ;
Belch, JJF ;
Hill, A ;
Struthers, AD .
HYPERTENSION, 2000, 35 (03) :746-751