ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium

被引:139
作者
Abouzeed, Yousef M. [1 ]
Baucheron, Sylvie [1 ]
Cloeckaert, Axel [1 ]
机构
[1] INRA, UR1282, Unite Infectiol Anim & Sante Publ, F-37380 Nouzilly, France
关键词
D O I
10.1128/AAC.00084-08
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In the sequenced genome of Salmonella enterica serovar Typhimurium strain LT2, an open reading frame (STM0580) coding for a putative regulatory protein of the TetR family is found upstream of the ramA gene. Overexpression of ramA results in increased expression of the AcrAB efflux pump and, consequently, multidrug resistance (MDR) in several bacterial species. The inactivation of the putative regulatory protein gene upstream of ramA in a susceptible serovar Typhimurium strain resulted in an MDR phenotype with fourfold increases in the MICs of unrelated antibiotics, such as quinolones/fluoroquinolones, phenicols, and tetracycline. The inactivation of this gene also resulted in a fourfold increase in the expression of ramA and a fourfold increase in the expression of the AcrAB efflux pump. These results indicated that the gene encodes a local repressor of ramA and was thus named ramR. In contrast, the inactivation of marR, marA, soxR, and soxS did not affect the susceptibilities of the strain. In quinolone- or fluoroquinolone-resistant strains of serovar Typhimurium overexpressing AcrAB, several point mutations which resulted in amino acid changes or an in-frame shift were identified in ramR; in addition, mutations interrupting ramR with an IS1 element were identified in high-level fluoroquinolone-resistant serovar Typhimurium DT204 strains. One serovar Typhimurium DT104 isolate had a 2-nucleotide deletion in the putative RamR binding site found upstream of ramA. These mutations were confirmed to play a role in the MDR phenotype by complementing the isolates with an intact ramR gene or by inactivating their respective ramA gene. No mutations in the mar or sox region were found in the strains studied. In conclusion, mutations in ramR appear to play a major role in the upregulation of RamA and AcrAB and, consequently, in the efflux-mediated MDR phenotype of serovar Typhimurium.
引用
收藏
页码:2428 / 2434
页数:7
相关论文
共 33 条
[1]   Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon [J].
Alekshun, MN ;
Levy, SB .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (10) :2067-2075
[2]   The mar regulon:: multiple resistance to antibiotics and other toxic chemicals [J].
Alekshun, MN ;
Levy, SB .
TRENDS IN MICROBIOLOGY, 1999, 7 (10) :410-413
[3]   Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA [J].
Barbosa, TM ;
Levy, SB .
JOURNAL OF BACTERIOLOGY, 2000, 182 (12) :3467-3474
[4]   AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104 [J].
Baucheron, S ;
Tyler, S ;
Boyd, D ;
Mulvey, MR ;
Chaslus-Dancla, E ;
Cloeckaert, A .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2004, 48 (10) :3729-3735
[5]   Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204 [J].
Baucheron, S ;
Chaslus-Dancla, E ;
Cloeckaert, A .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2004, 53 (04) :657-659
[6]   The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204 [J].
Baucheron, S ;
Imberechts, H ;
Chaslus-Dancla, E ;
Cloeckaert, A .
MICROBIAL DRUG RESISTANCE, 2002, 8 (04) :281-289
[7]   RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes [J].
Chollet, R ;
Chevalier, J ;
Bollet, C ;
Pages, JM ;
Davin-Regli, A .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2004, 48 (07) :2518-2523
[8]  
Cloeckaert A, 2001, VET RES, V32, P291, DOI 10.1051/vetres:2001105
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar typhimurium [J].
Giraud, E ;
Cloeckaert, A ;
Kerboeuf, D ;
Chaslus-Dancla, E .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (05) :1223-1228