Signalling and cell death in ozone-exposed plants

被引:364
作者
Kangasjärvi, J [1 ]
Jaspers, P [1 ]
Kollist, H [1 ]
机构
[1] Univ Helsinki, Dept Biol & Environm Sci, FIN-00014 Helsinki, Finland
关键词
Arabidopsis; abscisic acid; ethylene; jasmonic acid; MAP kinase; oxidative cell death cycle; ozone; salicylic acid;
D O I
10.1111/j.1365-3040.2005.01325.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Experiments with Arabidopsis mutants and sensitive and tolerant pairs in several other species have elucidated the molecular basis of plant ozone sensitivity and ozone lesion development. They have indicated an important role for hormonal signalling in determining the outcome of ozone challenge at the cellular level. The reactive oxygen species (ROS) from ozone degradation can cause either direct necrotic damage or induce the process of programmed cell death. Perception of ozone or ROS from its degradation in the apoplast activates several signal transduction pathways that regulate the responses of the cells to the increased oxidative load. Plant hormones salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in determining the duration and extent of ozone-induced cell death and its propagation. Salicylic acid is required for the programmed cell death, ethylene promotes endogenous ROS formation and lesion propagation, and jasmonic acid is involved in limiting the lesion spreading. Abscisic acid is most likely involved through the regulation of stomata and thus is expected to affect lesion initiation. The roles and interactions of perception of ozone, the immediate downstream responses, hormone biosynthesis and signalling during ozone lesion initiation and formation are reviewed.
引用
收藏
页码:1021 / 1036
页数:16
相关论文
共 131 条
[11]   The apoplastic oxidative burst in response to biotic stress in plants: a three-component system [J].
Bolwell, GP ;
Bindschedler, LV ;
Blee, KA ;
Butt, VS ;
Davies, DR ;
Gardner, SL ;
Gerrish, C ;
Minibayeva, F .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1367-1376
[12]   Differential responses of G-protein Arabidopsis thaliana mutants to ozone [J].
Booker, FL ;
Burkey, KO ;
Overmyer, K ;
Jones, AM .
NEW PHYTOLOGIST, 2004, 162 (03) :633-641
[13]   CA-2+ TRANSPORT IN MEMBRANE-VESICLES FROM PINTO BEAN-LEAVES AND ITS ALTERATION AFTER OZONE EXPOSURE [J].
CASTILLO, FJ ;
HEATH, RL .
PLANT PHYSIOLOGY, 1990, 94 (02) :788-795
[14]   Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis [J].
Chang, CCC ;
Ball, L ;
Fryer, MJ ;
Baker, NR ;
Karpinski, S ;
Mullineaux, PM .
PLANT JOURNAL, 2004, 38 (03) :499-511
[15]   Dissection of the ozone-induced calcium signature [J].
Clayton, H ;
Knight, MR ;
Knight, H ;
McAinsh, MR ;
Hetherington, AM .
PLANT JOURNAL, 1999, 17 (05) :575-579
[16]   Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence [J].
Conklin, PL ;
Barth, C .
PLANT CELL AND ENVIRONMENT, 2004, 27 (08) :959-970
[17]   Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant [J].
Conklin, PL ;
Williams, EH ;
Last, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9970-9974
[18]   Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis [J].
Conklin, PL ;
Norris, SR ;
Wheeler, GL ;
Williams, EH ;
Smirnoff, N ;
Last, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :4198-4203
[19]   Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins [J].
Coursol, S ;
Fan, LM ;
Le Stunff, H ;
Spiegel, S ;
Gilroy, S ;
Assmann, SM .
NATURE, 2003, 423 (6940) :651-654
[20]   A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells [J].
de Jong, AJ ;
Yakimova, ET ;
Kapchina, VM ;
Woltering, EJ .
PLANTA, 2002, 214 (04) :537-545