A Macroscopic Model for a System of Swarming Agents Using Curvature Control

被引:28
作者
Degond, Pierre [2 ,3 ]
Motsch, Sebastien [1 ]
机构
[1] Univ Maryland, Ctr Sci Computat & Math Modeling CSCAMM, College Pk, MD 20742 USA
[2] CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse, France
[3] Univ Toulouse 3, Inst Math Toulouse, CNRS UPS INSA UT1 UT2, UMR 5219, F-31062 Toulouse, France
关键词
Individual based model; Fish behavior; Persistent Turning Walker model; Vicsek model; Orientation interaction; Asymptotic analysis; Hydrodynamic limit; Collision invariants; COLLECTIVE BEHAVIOR; FLOCKING DYNAMICS; PHASE-TRANSITION; CONTINUUM-LIMIT; PARTICLE;
D O I
10.1007/s10955-011-0201-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the macroscopic limit of a new model of collective displacement. The model, called PTWA, is a combination of the Vicsek alignment model (Vicsek et al. in Phys. Rev. Lett. 75(6):1226-1229, 1995) and the Persistent Turning Walker (PTW) model of motion by curvature control (Degond and Motsch in J. Stat. Phys. 131(6):989-1021, 2008; Gautrais et al. in J. Math. Biol. 58(3):429-445, 2009). The PTW model was designed to fit measured trajectories of individual fish (Gautrais et al. in J. Math. Biol. 58(3):429-445, 2009). The PTWA model (Persistent Turning Walker with Alignment) describes the displacements of agents which modify their curvature in order to align with their neighbors. The derivation of its macroscopic limit uses the non-classical notion of generalized collisional invariant introduced in (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193-1215, 2008). The macroscopic limit of the PTWA model involves two physical quantities, the density and the mean velocity of individuals. It is a system of hyperbolic type but is non-conservative due to a geometric constraint on the velocity. This system has the same form as the macroscopic limit of the Vicsek model (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193-1215, 2008) (the 'Vicsek hydrodynamics') but for the expression of the model coefficients. The numerical computations show that the numerical values of the coefficients are very close. The 'Vicsek Hydrodynamic model' appears in this way as a more generic macroscopic model of swarming behavior as originally anticipated.
引用
收藏
页码:685 / 714
页数:30
相关论文
共 42 条
[1]  
[Anonymous], DIRICHLET FORMS
[2]  
BAKRY D, 2007, J FUNCT ANAL
[3]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[4]  
Bellomo N, 2008, MODEL SIMUL SCI ENG, P1, DOI 10.1007/978-0-8176-4600-4
[5]   Boltzmann and hydrodynamic description for self-propelled particles [J].
Bertin, Eric ;
Droz, Michel ;
Gregoire, Guillaume .
PHYSICAL REVIEW E, 2006, 74 (02)
[6]  
BOLLEY F, 2010, ARXIV10095166
[7]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
[8]  
Camazine S., 2001, Self-Organization in Biological Systems
[9]  
CANIZO JA, 2009, WELL POSEDNESS THEOR
[10]   ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL [J].
Carrillo, J. A. ;
Fornasier, M. ;
Rosado, J. ;
Toscani, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :218-236