Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes

被引:162
作者
Fang, Ji [1 ,2 ]
Song, Xiao-Wei [1 ,2 ]
Tian, Jing [1 ,2 ]
Chen, Hu-Yan [3 ]
Li, Dong-Feng [1 ,2 ]
Wang, Jian-Fei [3 ]
Ren, An-Jing [1 ,2 ]
Yuan, Wen-Jun [1 ,2 ,3 ]
Lin, Li [1 ,2 ]
机构
[1] Second Mil Med Univ, Dept Physiol, Shanghai 200433, Peoples R China
[2] Second Mil Med Univ, Key Lab Mol Neurobiol, Minist Educ, Shanghai 200433, Peoples R China
[3] Ningxia Med Univ, Dept Physiol & Neurobiol, Basic Med Coll, Yinchuan 750004, Peoples R China
基金
中国国家自然科学基金;
关键词
MicroRNA; Myocardial ischemia; Hypoxia; Apoptosis; Cardiomyocytes; MYOCARDIAL-INFARCTION; ANNEXIN-V; CARDIOMYOCYTES; INJURY; MIR-1; PROTECTS; HEART; PHOSPHATIDYLSERINE; IDENTIFICATION; MECHANISMS;
D O I
10.1007/s10495-011-0683-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are a novel class of powerful, endogenous regulators of gene expression. In an intact rat model of myocardial ischemia caused by coronary artery ligation, this study identified 17 miRNAs that changed more than 1.5-fold in the myocardium subjected to 4-h ischemia. Using miRNA microarray analysis, most of these aberrantly expressed miRNAs were confirmed by quantitative RT-PCR. MiR-378, a significantly down-regulated miRNA, was selected for further function study. In serum deprived rat H9c2 cardiomyocytes exposed to hypoxia (1% O-2), miR-378 expression was down-regulated as well. The overexpression of miR-378 resulting from miR-378 mimic transfection significantly enhanced cell viability, reduced lactate dehydrogenase release, and inhibited apoptosis and necrosis. By contrast, miR-378 deficiency resulting from miR-378 inhibitor transfection aggravated the hypoxia-induced apoptosis and cell injury. In accordance, miR-378 inhibitor caused significant apoptosis and cell injury to cardiomyocytes cultured under normoxia. Using bioinformatic algorithms, caspase-3, a key apoptosis executioner, was predicted as a putative target of miR-378. The quantitative RT-PCR showed no effects of miR-378 mimic or inhibitor on caspase-3 mRNA level. However, the amount of caspase-3 proteins was reduced by miR-378 mimic, whereas increased by miR-378 inhibitor. Furthermore, the luciferase reporter assay confirmed caspase-3 to be a target of miR-378, and the apoptosis and cell injury caused by miR-378 inhibitor in both normoxic and hypoxic cells were abolished by a caspase-3 inhibitor. This study first showed that miR-378 inhibited caspase-3 expression and attenuated ischemic injury in cardiomyocytes. It may represent a potential novel treatment for apoptosis and ischemic heart disease.
引用
收藏
页码:410 / 423
页数:14
相关论文
共 38 条
[1]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[4]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[5]  
Bostjancic E, 2010, FOLIA BIOL-PRAGUE, V56, P27
[6]   MicroRNAs miR-1, miR-133a, miR-133b and miR-208 Are Dysregulated in Human Myocardial Infarction [J].
Bostjancic, Emanuela ;
Zidar, Nina ;
Stajer, Dusan ;
Glavac, Damjan .
CARDIOLOGY, 2010, 115 (03) :163-169
[7]   MicroRNA-133 controls cardiac hypertrophy [J].
Care, Alessandra ;
Catalucci, Daniele ;
Felicetti, Federica ;
Bonci, Desiree ;
Addario, Antonio ;
Gallo, Paolo ;
Bang, Marie-Louise ;
Segnalini, Patrizia ;
Gu, Yusu ;
Dalton, Nancy D. ;
Elia, Leonardo ;
Latronico, Michael V. G. ;
Hoydal, Morten ;
Autore, Camillo ;
Russo, Matteo A. ;
Dorn, Gerald W., II ;
Ellingsen, Oyvind ;
Ruiz-Lozano, Pilar ;
Peterson, Kirk L. ;
Croce, Carlo M. ;
Peschle, Cesare ;
Condorelli, Gianluigi .
NATURE MEDICINE, 2007, 13 (05) :613-618
[8]   Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4 [J].
Cheng, Yunhui ;
Zhu, Ping ;
Yang, Jian ;
Liu, Xiaojun ;
Dong, Shimin ;
Wang, Xiaobin ;
Chun, Bao ;
Zhuang, Jian ;
Zhang, Chunxiang .
CARDIOVASCULAR RESEARCH, 2010, 87 (03) :431-439
[9]   MicroRNA Expression Signature and the Role of MicroRNA-21 in the Early Phase of Acute Myocardial Infarction [J].
Dong, Shimin ;
Cheng, Yunhui ;
Yang, Jian ;
Li, Jingyuan ;
Liu, Xiaojun ;
Wang, Xiaobin ;
Wang, Dong ;
Krall, Thomas J. ;
Delphin, Ellise S. ;
Zhang, Chunxiang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (43) :29514-29525
[10]   Why Do We Still Not Have Cardioprotective Drugs? [J].
Downey, James M. ;
Cohen, Michael V. .
CIRCULATION JOURNAL, 2009, 73 (07) :1171-1177