ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae

被引:84
作者
Luo, P [1 ]
Li, HY [1 ]
Morrison, DA [1 ]
机构
[1] Univ Illinois, Dept Biol Sci, Mol Biol Lab, Chicago, IL 60607 USA
关键词
D O I
10.1046/j.1365-2958.2003.03714.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Natural competence for genetic transformation in Streptococcus pneumoniae is achieved directly by specific proteins that are involved in DNA uptake and chromosomal recombination, and is regulated indirectly by a quorum-sensing system encoded by two loci, comAB and comCDE. The alternative sigma factor, ComX, is thought to be the unique link between quorum sensing and competence-specific genes. To test this hypothesis, we replaced the quorum-sensing inducible promoter (P-Q) of the comX gene with either a constitutive promoter (P-C) or a raffinose-inducible promoter (P-R), so that comX transcription would be independent of quorum sensing. Surprisingly, both competence and expression of late genes, such as ssbB, cglA or celB, were found to depend on CSP in these mutants. An unknown, CSP-dependent regulator was needed when comX was expressed from these ectopic promoters, and it appears to act post-transcriptionally. However, when a multicopy nisin-inducible ComX-overexpressing plasmid was introduced, pneumococcal cells developed competence in the presence of nisin even despite deletion of comE. At 1% of the normal protein peak level, ComX protein stimulated competence without the participation of the pheromone response circuit. Thus, ComX is a unique link to competence-specific genes, but depends on multiple outputs of quorum sensing for maximal expression.
引用
收藏
页码:623 / 633
页数:11
相关论文
共 47 条
[1]   Development of competence in Streptococcus pneumoniae:: pheromone autoinduction and control of quorum sensing by the oligopeptide permease [J].
Alloing, G ;
Martin, B ;
Granadel, C ;
Claverys, JP .
MOLECULAR MICROBIOLOGY, 1998, 29 (01) :75-83
[2]   3 HIGHLY HOMOLOGOUS MEMBRANE-BOUND LIPOPROTEINS PARTICIPATE IN OLIGOPEPTIDE TRANSPORT BY THE AMI SYSTEM OF THE GRAM-POSITIVE STREPTOCOCCUS-PNEUMONIAE [J].
ALLOING, G ;
DEPHILIP, P ;
CLAVERYS, JP .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 241 (01) :44-58
[3]   Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide [J].
Bartilson, M ;
Marra, A ;
Christine, J ;
Asundi, JS ;
Schneider, WP ;
Hromockyj, AE .
MOLECULAR MICROBIOLOGY, 2001, 39 (01) :126-135
[4]   Uptake of transforming DNA in Gram-positive bacteria:: a view from Streptococcus pneumoniae [J].
Bergé, M ;
Moscoso, M ;
Prudhomme, M ;
Martin, B ;
Claverys, JP .
MOLECULAR MICROBIOLOGY, 2002, 45 (02) :411-421
[5]   Improved vectors for nisin-controlled expression in gram-positive bacteria [J].
Bryan, EM ;
Bae, T ;
Kleerebezem, H ;
Dunny, GM .
PLASMID, 2000, 44 (02) :183-190
[6]   A competence regulon in Streptococcus pneumoniae revealed by genomic analysis [J].
Campbell, EA ;
Choi, SY ;
Masure, HR .
MOLECULAR MICROBIOLOGY, 1998, 27 (05) :929-939
[7]   TRANSFORMATION AND DNA SIZE .I. ACTIVITY OF FRAGMENTS OF DEFINED SIZE AND A FIT TO A RANDOM DOUBLE CROSS-OVER MODEL [J].
CATO, A ;
GUILD, WR .
JOURNAL OF MOLECULAR BIOLOGY, 1968, 37 (01) :157-&
[8]   Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival [J].
Chastanet, A ;
Prudhomme, M ;
Claverys, JP ;
Msadek, T .
JOURNAL OF BACTERIOLOGY, 2001, 183 (24) :7295-7307
[9]  
CHEN JD, 1987, J GEN MICROBIOL, V133, P1959
[10]   Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae [J].
Claverys, JP ;
Havarstein, LS .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2002, 7 :D1798-D1814