Peptidoglycan recognition proteins (PGRPs)

被引:306
作者
Dziarski, R [1 ]
机构
[1] Indiana Univ, Sch Med, NW Ctr Med Educ, Gary, IN 46408 USA
关键词
innate immunity; pattern recognition receptors; peptidoglycan recognition proteins; muramyl peptides; bacterial cell wall;
D O I
10.1016/j.molimm.2003.10.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Innate immune system recognizes microorganisms through a series of pattern recognition receptors that are highly conserved in evolution. Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules that are conserved from insects to mammals and recognize bacteria and their unique cell wall component, peptidoglycan (PGN). Drosophila, mosquito, and mammals have families of 13, 7, and 4 PGRP genes, respectively, and some of these genes are alternatively spliced. PGRPs are differentially expressed in various cells and tissues, their expression is often upregulated by bacteria, and they mediate host responses to bacterial infections. Insect PGRPs have four known effector functions that are unique for insects: activation of prophenoloxidase cascade, activation of Toll receptor, activation of Imd pathway, and induction of phagocytosis. One function, amidase activity, is shared by some insect and mammalian PGRPs, whereas antibacterial activity of some mammalian PGRPs is unique for mammals. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:877 / 886
页数:10
相关论文
共 52 条
[1]  
[Anonymous], 2001, molecular medical microbiology, P137
[2]  
Ashida M., 1997, Molecular mechanisms of immune responses in insects, P135
[3]   THE STRUCTURE OF BACTERIOPHAGE-T7 LYSOZYME, A ZINC AMIDASE AND AN INHIBITOR OF T7 RNA-POLYMERASE [J].
CHENG, XD ;
ZHANG, X ;
PFLUGRATH, JW ;
STUDIER, FW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (09) :4034-4038
[4]   Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila [J].
Choe, KM ;
Werner, T ;
Stöven, S ;
Hultmark, D ;
Anderson, KV .
SCIENCE, 2002, 296 (5566) :359-362
[5]   Immunity-related genes and gene families in Anopheles gambiae [J].
Christophides, GK ;
Zdobnov, E ;
Barillas-Mury, C ;
Birney, E ;
Blandin, S ;
Blass, C ;
Brey, PT ;
Collins, FH ;
Danielli, A ;
Dimopoulos, G ;
Hetru, C ;
Hoa, NT ;
Hoffmann, JA ;
Kanzok, SM ;
Letunic, I ;
Levashina, EA ;
Loukeris, TG ;
Lycett, G ;
Meister, S ;
Michel, K ;
Moita, LF ;
Müller, HM ;
Osta, MA ;
Paskewitz, SM ;
Reichhart, JM ;
Rzhetsky, A ;
Troxler, L ;
Vernick, KD ;
Vlachou, D ;
Volz, J ;
von Mering, C ;
Xu, JN ;
Zheng, LB ;
Bork, P ;
Kafatos, FC .
SCIENCE, 2002, 298 (5591) :159-165
[6]   CHARACTERIZATION OF HUMAN SERUM N-ACETYLMURAMYL-L-ALANINE AMIDASE PURIFIED BY AFFINITY-CHROMATOGRAPHY [J].
DEPAUW, P ;
NEYT, C ;
VANDERWINKEL, E ;
WATTIEZ, R ;
FALMAGNE, P .
PROTEIN EXPRESSION AND PURIFICATION, 1995, 6 (03) :371-378
[7]   Genome expression analysis of Anopheles gambiae:: Responses to injury, bacterial challenge, and malaria infection [J].
Dimopoulos, G ;
Christophides, GK ;
Meister, S ;
Schultz, J ;
White, KP ;
Barillas-Mury, C ;
Kafatos, FC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8814-8819
[8]   COMPLETE NUCLEOTIDE-SEQUENCE OF BACTERIOPHAGE-T7 DNA AND THE LOCATIONS OF T7 GENETIC ELEMENTS [J].
DUNN, JJ ;
STUDIER, FW .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (04) :477-535
[10]   Defect in neutrophil killing and increased susceptibility to infection with-nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice [J].
Dziarski, R ;
Platt, KA ;
Gelius, E ;
Steiner, H ;
Gupta, D .
BLOOD, 2003, 102 (02) :689-697