Aggregation of Ureido-Pyrimidinone Supramolecular Thermoplastic Elastomers into Nanofibers: A Kinetic Analysis

被引:167
作者
Appel, Wilco P. J. [1 ,2 ]
Portale, Giuseppe [3 ]
Wisse, Eva [1 ,2 ]
Dankers, Patricia Y. W. [1 ,2 ]
Meijer, E. W. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Lab Macromol & Organ Chem, NL-5600 MB Eindhoven, Netherlands
[3] DUBBLE CRG, European Synchrotron Radiat Facil ESRF, Netherlands Org Sci Res NWO, F-38043 Grenoble, France
关键词
HYDROGEN-BONDING MOTIFS; MOLECULAR RECOGNITION; POLYMERS; POLYURETHANES; DIMERIZATION; COPOLYMERS; MORPHOLOGY; BEHAVIOR; BLOCKS; DESIGN;
D O I
10.1021/ma201303s
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The self-complementary hydrogen bonding ureido-pyrimidinone (UPy) motif is widely used in the design of supramolecular polymers because of its high dimerization constant. Lateral aggregation into fibrous structures is achieved by the addition of urea functions close to the UPy end group of low-T-g oligomers, yielding supramolecular thermoplastic elastomers. The rate of fiber formation is critically dependent on the substituent at the five- and six-positions of the UPy unit. Here the aggregation behavior in the solid state is disclosed for a series of molecules with the commonly used methyl, the optically pure (S)2,7-dimethylheptyl and (S)-1-methylpropyl, and the racemic 1-ethylpentyl group at the six-position. The rate of nanofiber crystallization from the melt was investigated with a variety of techniques, including SAXS, WAXS, AFM, DSC, IR, and CD spectroscopy. As a result, the different stages involved in the nanofiber formation were elucidated. The nanofiber formation is a hierarchical process starting from the phase-separated melt with the dimerization of the UPy-units. For the lateral aggregation into high aspect nanofibers, both a nonsubstituted five position and urea functionalities are required. The nanofiber formation is the result of ID stack formation accompanied by secondary nucleation of multiple stacks. The stack-to-stack distance within a nanofiber is dependent on the size of the UPy-substituent, which demonstrates that the substituents are in-between the stacks in the nanofibers. The results also demonstrate that stack and nanofiber formation is slowed down and suppressed by a branching of the six-substituent close to the UPy motif, whereas the presence of stereochemical isomers further suppresses this aggregation from the melt. These detailed insights into the kinetic behavior of nanofiber formation pave the way to create adaptable supramolecular materials.
引用
收藏
页码:6776 / 6784
页数:9
相关论文
共 51 条
[1]   Probing the solvent-induced tautomerism of a redox-active ureidopyrimidinone [J].
Alexander, Anne-Marie ;
Bria, Marc ;
Brunklaus, Gunther ;
Caldwell, Stuart ;
Cooke, Graeme ;
Garety, James F. ;
Hewage, Shanika G. ;
Hocquel, Yann ;
McDonald, Niall ;
Rabani, Gouher ;
Rosair, Georgina ;
Smith, Brian O. ;
Spiess, Hans Wolfgang ;
Rotello, Vincent M. ;
Woisel, Patrice .
CHEMICAL COMMUNICATIONS, 2007, (22) :2246-2248
[2]   Supramolecular Materials from Inorganic Building Blocks [J].
Ariga, Katsuhiko ;
Ji, Qingmin ;
Hill, Jonathan P. ;
Vinu, Ajayan .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2010, 20 (01) :1-9
[3]   Hydrogen-bonded supramolecular polymers: A literature review [J].
Armstrong, G ;
Buggy, M .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (03) :547-559
[4]   Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding [J].
Beijer, FH ;
Sijbesma, RP ;
Kooijman, H ;
Spek, AL ;
Meijer, EW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (27) :6761-6769
[5]   Molecular recognition in bisurea thermoplastic elastomers studied with pyrene-based fluorescent probes and atomic force microscopy [J].
Botterhuis, Nicole E. ;
Karthikeyan, S. ;
Veldman, Dirk ;
Meskers, Stefan C. J. ;
Sijbesma, Rint P. .
CHEMICAL COMMUNICATIONS, 2008, (33) :3915-3917
[6]   Self-assembly and morphology of polydimethylsiloxane supramolecular thermoplastic elastomers [J].
Botterhuis, Nicole E. ;
van Beek, D. J. M. ;
van Gemert, Gaby M. L. ;
Bosman, Anton W. ;
Sijbesma, Rint P. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2008, 46 (12) :3877-3885
[7]   Self-Sorting of Guests and Hard Blocks in Bisurea-Based Thermoplastic Elastomers [J].
Botterhuis, Nicole E. ;
Karthikeyan, S. ;
Spiering, A. J. H. ;
Sijbesma, Rint P. .
MACROMOLECULES, 2010, 43 (02) :745-751
[8]   Supramolecular polymers [J].
Brunsveld, L ;
Folmer, BJB ;
Meijer, EW ;
Sijbesma, RP .
CHEMICAL REVIEWS, 2001, 101 (12) :4071-4097
[9]   Self-healing and thermoreversible rubber from supramolecular assembly [J].
Cordier, Philippe ;
Tournilhac, Francois ;
Soulie-Ziakovic, Corinne ;
Leibler, Ludwik .
NATURE, 2008, 451 (7181) :977-980
[10]   Oligo(trimethylene carbonate)-based supramolecular biomaterials [J].
Dankers, Patricia Y. W. ;
Zhang, Zheng ;
Wisse, Eva ;
Grijpma, Dirk W. ;
Sijbesma, Rint P. ;
Feijen, Jan ;
Meijer, E. W. .
MACROMOLECULES, 2006, 39 (25) :8763-8771