The terminal adenosine of tRNAGln mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase

被引:16
作者
Liu, JH
Ibba, M
Hong, KW
Söll, D
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
关键词
D O I
10.1021/bi980704+
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sequence-specific interactions between Escherichia coli glutaminyl-tRNA synthetase and tRNA(Gln) have been shown to determine the apparent affinity of the enzyme for its cognate amino acid glutamine during aminoacylation. Specifically, structural and biochemical studies suggested that residues Asp66, Tyr211, and Phe233 in glutaminyl-tRNA synthetase could potentially facilitate cognate amino recognition through their specific interactions with both A76 of tRNA(Gln) and glutamine. These residues were randomly mutated and the resulting glutaminyl-tRNA synthetase variants were screened in vivo for changes in their ability to recognize noncognate tRNAs and retention of tRNA-glutaminylation activity. When the variants selected in this way were characterized in vitro, they all showed dramatic decreases in apparent affinity (K-M) for glutamine but little or no change in cognate tRNA affinity. Conservative replacements such as Y211F, F233L, and D66E resulted in 60-, 19-, and 18-fold increases compared to wild-type in the K-M for glutamine, respectively, but had little effect on the turnover number (k(cat)). Nonconservative replacements affected both K-M for glutamine and k(cat); Y211S, F233D, and D66F displayed 1700, 3700, and 1200-fold decreases in k(cat)/K-M for glutamine compared to wild-type. Double mutant cycle analysis indicated that Tyr211, and Phe233 interact strongly to enhance glutamine binding. These data now show that Asp66, Tyr211 and Phe233 mediate tRNA-dependent cognate amino acid recognition via the invariant 3'-terminal adenosine of tRNA(Gln).
引用
收藏
页码:9836 / 9842
页数:7
相关论文
共 36 条
[1]   Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP [J].
Arnez, JG ;
Steitz, TA .
BIOCHEMISTRY, 1996, 35 (47) :14725-14733
[2]  
BALDWIN AN, 1966, J BIOL CHEM, V241, P839
[3]   RIBBONS 2 0 [J].
CARSON, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :958-&
[4]   THE USE OF DOUBLE MUTANTS TO DETECT STRUCTURAL-CHANGES IN THE ACTIVE-SITE OF THE TYROSYL-TRANSFER RNA-SYNTHETASE (BACILLUS-STEAROTHERMOPHILUS) [J].
CARTER, PJ ;
WINTER, G ;
WILKINSON, AJ ;
FERSHT, AR .
CELL, 1984, 38 (03) :835-840
[5]   THE ACTIVE-SITE OF YEAST ASPARTYL-TRANSFER-RNA SYNTHETASE - STRUCTURAL AND FUNCTIONAL-ASPECTS OF THE AMINOACYLATION REACTION [J].
CAVARELLI, J ;
ERIANI, G ;
REES, B ;
RUFF, M ;
BOEGLIN, M ;
MITSCHLER, A ;
MARTIN, F ;
GANGLOFF, J ;
THIERRY, JC ;
MORAS, D .
EMBO JOURNAL, 1994, 13 (02) :327-337
[6]   A 2ND CLASS OF SYNTHETASE STRUCTURE REVEALED BY X-RAY-ANALYSIS OF ESCHERICHIA-COLI SERYL-TRANSFER RNA-SYNTHETASE AT 2.5-A [J].
CUSACK, S ;
BERTHETCOLOMINAS, C ;
HARTLEIN, M ;
NASSAR, N ;
LEBERMAN, R .
NATURE, 1990, 347 (6290) :249-255
[7]  
ENGLISCHPETERS S, 1991, BIOCHIMIE, V73, P1501
[8]   PARTITION OF TRANSFER-RNA SYNTHETASES INTO 2 CLASSES BASED ON MUTUALLY EXCLUSIVE SETS OF SEQUENCE MOTIFS [J].
ERIANI, G ;
DELARUE, M ;
POCH, O ;
GANGLOFF, J ;
MORAS, D .
NATURE, 1990, 347 (6289) :203-206
[9]   HYDROGEN-BONDING AND BIOLOGICAL SPECIFICITY ANALYZED BY PROTEIN ENGINEERING [J].
FERSHT, AR ;
SHI, JP ;
KNILLJONES, J ;
LOWE, DM ;
WILKINSON, AJ ;
BLOW, DM ;
BRICK, P ;
CARTER, P ;
WAYE, MMY ;
WINTER, G .
NATURE, 1985, 314 (6008) :235-238
[10]  
Freist W, 1997, BIOL CHEM, V378, P1103