Coupling between catalytic site and collective dynamics: A requirement for mechanochemical activity of enzymes

被引:218
作者
Yang, LW [1 ]
Bahar, I [1 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15261 USA
关键词
D O I
10.1016/j.str.2005.03.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Growing evidence supports the view that enzymatic activity results from a subtle interplay between chemical kinetics and molecular motions. A systematic analysis is performed here to delineate the type and level of coupling between catalysis and conformational mechanics. The dynamics of a set of 98 enzymes representative of different EC classes are analyzed with the Gaussian network model (GNM) and compared with experimental data. In more than 70% of the examined enzymes, the global hinge centers predicted by the GNM are found to be colocalized with the catalytic sites experimentally identified. Low translational mobility (< 7%) is observed for the catalytic residues, consistent with the fine-tuned design of enzymes to achieve precise mechanochemical activities. Ligand binding sites, while closely neighboring catalytic sites, enjoy a moderate flexibility to accommodate the ligand binding. These findings could serve as additionalcriteria for assessing drug binding residues and could lessen the computational burden of substrate docking searches.
引用
收藏
页码:893 / 904
页数:12
相关论文
共 72 条
[1]   Protein dynamics and enzymatic catalysis: Investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A [J].
Agarwal, PK ;
Geist, A ;
Gorin, A .
BIOCHEMISTRY, 2004, 43 (33) :10605-10618
[2]   Detoxification of environmental mutagens and carcinogens: Structure, mechanism, and evolution of liver epoxide hydrolase [J].
Argiriadi, MA ;
Morisseau, C ;
Hammock, BD ;
Christianson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (19) :10637-10642
[3]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515
[4]   Vibrational dynamics of folded proteins: Significance of slow and fast motions in relation to function and stability [J].
Bahar, I ;
Atilgan, AR ;
Demirel, MC ;
Erman, B .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2733-2736
[5]   Collective motions in HIV-1 reverse transcriptase: Examination of flexibility and enzyme function [J].
Bahar, I ;
Erman, B ;
Jernigan, RL ;
Atilgan, AR ;
Covell, DG .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (03) :1023-1037
[6]   Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential [J].
Bahar, I ;
Atilgan, AR ;
Erman, B .
FOLDING & DESIGN, 1997, 2 (03) :173-181
[7]   SEQUENCE, STRUCTURE AND ACTIVITY OF PHOSPHOGLYCERATE KINASE - POSSIBLE HINGE-BENDING ENZYME [J].
BANKS, RD ;
BLAKE, CCF ;
EVANS, PR ;
HASER, R ;
RICE, DW ;
HARDY, GW ;
MERRETT, M ;
PHILLIPS, AW .
NATURE, 1979, 279 (5716) :773-778
[8]   Analysis of catalytic residues in enzyme active sites [J].
Bartlett, GJ ;
Porter, CT ;
Borkakoti, N ;
Thornton, JM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 324 (01) :105-121
[9]   A perspective on enzyme catalysis [J].
Benkovic, SJ ;
Hammes-Schiffer, S .
SCIENCE, 2003, 301 (5637) :1196-1202
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242