Stable optimization of a tensor product variational state

被引:46
作者
Gendiar, A [1 ]
Maeshima, N
Nishino, T
机构
[1] Kobe Univ, Fac Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[2] Slovak Acad Sci, Inst Elect Engn, SK-84239 Bratislava, Slovakia
[3] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2003年 / 110卷 / 04期
关键词
DENSITY-MATRIX RENORMALIZATION; CLASSICAL-MODELS; APPROXIMATION; FORMULATION;
D O I
10.1143/PTP.110.691
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a variational problem for three-dimensional (3D) classical lattice models. We construct the trial state as a two-dimensional product of local variational weights that contain auxiliary variables. We propose a stable numerical algorithm for the maximization of the variational partition function per layer. The numerical stability and efficiency of the new method are examined through its application to the 3D using model.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 20 条
[1]   Density-matrix spectra of solvable fermionic systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2001, 64 (06)
[2]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[3]   Latent heat calculation of the three-dimensional q=3, 4, and 5 Potts models by the tensor product variational approach [J].
Gendiar, A. ;
Nishino, T. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046702
[4]   Three-dimensional 3-state Potts model revisited with new techniques [J].
Janke, W ;
Villanova, R .
NUCLEAR PHYSICS B, 1997, 489 (03) :679-696
[5]  
Kramers HA, 1941, PHYS REV, V60, P263, DOI 10.1103/PhysRev.60.263
[6]   APPROXIMATE DIAGONALIZATION USING THE DENSITY-MATRIX RENORMALIZATION-GROUP METHOD - A 2-DIMENSIONAL-SYSTEMS PERSPECTIVE [J].
LIANG, SD ;
PANG, HB .
PHYSICAL REVIEW B, 1994, 49 (13) :9214-9217
[7]  
MAESHIMA N, 2001, PHYS REV E, V46, DOI UNSP 106705
[8]   Single-block renormalization group:: quantum mechanical problems [J].
Martín-Delgado, MA ;
Rodriguez-Laguna, J ;
Sierra, G .
NUCLEAR PHYSICS B, 2001, 601 (03) :569-590
[9]   Stripe ansatze from exactly solved models -: art. no. 075117 [J].
Martín-Delgado, MA ;
Roncaglia, M ;
Sierra, G .
PHYSICAL REVIEW B, 2001, 64 (07)
[10]   Corner transfer matrix renormalization group method [J].
Nishino, T ;
Okunishi, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (04) :891-894