Evidence Based Selection of Housekeeping Genes

被引:608
作者
de Jonge, Hendrik J. M. [1 ]
Fehrmann, Rudolf S. N. [2 ,3 ,4 ]
de Bont, Eveline S. J. M. [1 ]
Hofstra, Robert M. W. [2 ]
Gerbens, Frans [2 ]
Kamps, Willem A. [1 ]
de Vries, Elisabeth G. E. [4 ]
van der Zee, Ate G. J. [3 ]
Meerman, Gerard J. te [2 ]
ter Elst, Arja [1 ]
机构
[1] Univ Groningen, Dept Pediat, Univ Med Ctr Groningen, Div Pediat Oncol Hematol,Beatrix Childrens Hosp, NL-9700 AB Groningen, Netherlands
[2] Univ Groningen, Dept Genet, Univ Med Ctr Groningen, NL-9700 AB Groningen, Netherlands
[3] Univ Groningen, Dept Gynecol, Univ Med Ctr Groningen, NL-9700 AB Groningen, Netherlands
[4] Univ Groningen, Dept Med Oncol, Univ Med Ctr Groningen, NL-9700 AB Groningen, Netherlands
来源
PLOS ONE | 2007年 / 2卷 / 09期
关键词
D O I
10.1371/journal.pone.0000898
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For accurate and reliable gene expression analysis, normalization of gene expression data against housekeeping genes (reference or internal control genes) is required. It is known that commonly used housekeeping genes (e. g. ACTB, GAPDH, HPRT1, and B2M) vary considerably under different experimental conditions and therefore their use for normalization is limited. We performed a meta-analysis of 13,629 human gene array samples in order to identify the most stable expressed genes. Here we show novel candidate housekeeping genes (e. g. RPS13, RPL27, RPS20 and OAZ1) with enhanced stability among a multitude of different cell types and varying experimental conditions. None of the commonly used housekeeping genes were present in the top 50 of the most stable expressed genes. In addition, using 2,543 diverse mouse gene array samples we were able to confirm the enhanced stability of the candidate novel housekeeping genes in another mammalian species. Therefore, the identified novel candidate housekeeping genes seem to be the most appropriate choice for normalizing gene expression data.
引用
收藏
页数:5
相关论文
共 16 条
[1]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[2]   Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J].
Bustin, SA .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2000, 25 (02) :169-193
[3]   Post-analysis follow-up and validation of microarray experiments [J].
Chuaqui, RF ;
Bonner, RF ;
Best, CJM ;
Gillespie, JW ;
Flaig, MJ ;
Hewitt, SM ;
Phillips, JL ;
Krizman, DB ;
Tangrea, MA ;
Ahram, M ;
Linehan, WM ;
Knezevic, V ;
Emmert-Buck, MR .
NATURE GENETICS, 2002, 32 (Suppl 4) :509-514
[4]   Gene Expression Omnibus: NCBI gene expression and hybridization array data repository [J].
Edgar, R ;
Domrachev, M ;
Lash, AE .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :207-210
[5]   Real-time quantitative RT-PCR after laser-assisted cell picking [J].
Fink, L ;
Seeger, W ;
Ermert, L ;
Hänze, J ;
Stahl, U ;
Grimminger, F ;
Kummer, W ;
Bohle, RM .
NATURE MEDICINE, 1998, 4 (11) :1329-1333
[6]   An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression [J].
Giulietti, A ;
Overbergh, L ;
Valckx, D ;
Decallonne, B ;
Bouillon, R ;
Mathieu, C .
METHODS, 2001, 25 (04) :386-401
[7]   Real time quantitative PCR [J].
Heid, CA ;
Stevens, J ;
Livak, KJ ;
Williams, PM .
GENOME RESEARCH, 1996, 6 (10) :986-994
[8]   KINETIC PCR ANALYSIS - REAL-TIME MONITORING OF DNA AMPLIFICATION REACTIONS [J].
HIGUCHI, R ;
FOCKLER, C ;
DOLLINGER, G ;
WATSON, R .
BIO-TECHNOLOGY, 1993, 11 (09) :1026-1030
[9]  
JOHNSON ML, 1995, BIOTECHNIQUES, V19, P712
[10]   Functional genomics in rat models of hypertension: Using differential expression and congenic strains to identify and evaluate candidate genes [J].
Lee, SJ ;
Cicila, GT .
CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 2002, 12 (04) :297-316