Stable hZW10 kinetochore residency, mediated by hZwint-1 interaction, is essential for the mitotic checkpoint

被引:62
作者
Famulski, Jakub K. [1 ]
Vos, Larissa [1 ]
Sun, Xuejun [2 ]
Chan, Gordon [1 ,2 ]
机构
[1] Univ Alberta, Dept Oncol, Edmonton, AB T6G 1Z2, Canada
[2] Cross Canc Inst, Edmonton, AB T6G 1Z2, Canada
关键词
D O I
10.1083/jcb.200708021
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The mitotic checkpoint is an essential surveillance mechanism that ensures high fidelity chromosome segregation during mitosis. Mitotic checkpoint function depends on numerous kinetochore proteins, including ZW10, ROD, and Zwilch (the ROD-ZW10-Zwilch complex). Through an extensive mutagenesis screen of hZW10, we have mapped the kinetochore localization domain of hZW10 as well as the hZwint-1 interaction domain. We find that hZwint-1-noninteracting mutants still localize to kinetochores. In addition, using fluorescence recovery after photobleaching, we have found that hZW10 residency at metaphase kinetochores is brief (half-time of 13 s). However, during prometaphase or at unattached kinetochores, enhanced green fluorescent protein-hZW10 becomes a stable component of the kinetochore. Moreover, we find that stable hZW10 kinetochore residency at prometaphase kinetochores is dependent on its interaction with hZwint-1, and is essential for mitotic checkpoint arrest.
引用
收藏
页码:507 / 520
页数:14
相关论文
共 37 条
[1]   Molecular approaches to management of epithelial ovarian cancer [J].
Bast, RC ;
Yu, Y ;
Xu, FJ ;
Le, XF ;
Mills, GB .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2000, 10 :2-7
[2]   In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis [J].
Basto, R ;
Scaerou, F ;
Mische, S ;
Wojcik, E ;
Lefebvre, C ;
Gomes, R ;
Hays, T ;
Karess, R .
CURRENT BIOLOGY, 2004, 14 (01) :56-61
[3]   Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex [J].
Buffin, E ;
Lefebvre, C ;
Huang, JY ;
Gagou, ME ;
Karess, RE .
CURRENT BIOLOGY, 2005, 15 (09) :856-861
[4]   Kinetochore structure and function [J].
Chan, GK ;
Liu, ST ;
Yen, TJ .
TRENDS IN CELL BIOLOGY, 2005, 15 (11) :589-598
[5]   Human Zw10 and ROD ave mitotic checkpoint proteins that bind to kinetochores [J].
Chan, GKT ;
Jablonski, SA ;
Starr, DA ;
Goldberg, ML ;
Yen, TJ .
NATURE CELL BIOLOGY, 2000, 2 (12) :944-947
[6]   Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1 [J].
Chan, GKT ;
Schaar, BT ;
Yen, TJ .
JOURNAL OF CELL BIOLOGY, 1998, 143 (01) :49-63
[7]   A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension [J].
Cheeseman, IM ;
Niessen, S ;
Anderson, S ;
Hyndman, F ;
Yates, JR ;
Oegema, K ;
Desai, A .
GENES & DEVELOPMENT, 2004, 18 (18) :2255-2268
[8]   Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells [J].
Hori, T ;
Haraguchi, T ;
Hiraoka, Y ;
Kimura, H ;
Fukagawa, T .
JOURNAL OF CELL SCIENCE, 2003, 116 (16) :3347-3362
[9]   Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation [J].
Howell, BJ ;
McEwen, BE ;
Canman, JC ;
Hoffman, DB ;
Farrar, EM ;
Rieder, CL ;
Salmon, ED .
JOURNAL OF CELL BIOLOGY, 2001, 155 (07) :1159-1172
[10]   Spindle checkpoint protein dynamics at kinetochores in living cells [J].
Howell, BJ ;
Moree, B ;
Farrar, EM ;
Stewart, S ;
Fang, GW ;
Salmon, ED .
CURRENT BIOLOGY, 2004, 14 (11) :953-964