Spindle checkpoint protein dynamics at kinetochores in living cells

被引:263
作者
Howell, BJ [1 ]
Moree, B [1 ]
Farrar, EM [1 ]
Stewart, S [1 ]
Fang, GW [1 ]
Salmon, ED [1 ]
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
关键词
D O I
10.1016/j.cub.2004.05.053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: To test current models for how unattached and untense kinetochores prevent Cdc20 activation of the anaphase-promoting complex/cyclosome (APC/C) throughout the spindle and the cytoplasm, we used GFP fusions and live-cell imaging to quantify the abundance and dynamics of spindle checkpoint proteins Mad1, Mad2, Bub1, BubR1, Mps1, and Cdc20 at kinetochores during mitosis in living PtK2 cells. Results: Unattached kinetochores in prometaphase bound on average only a small fraction (estimated at 500-5000 molecules) of the total cellular pool of each spindle checkpoint protein. Measurements of fluorescence recovery after photobleaching (FRAP) showed that GFP-Cdc20 and GFP-BubR1 exhibit biphasic exponential kinetics at unattached kinetochores, with similar to50% displaying very fast kinetics (t(1/2) of similar to1-3 s) and similar to50% displaying slower kinetics similar to the single exponential kinetics of GFP-Mad2 and GFP-Bub3 (t(1/2) of 21-23 s). The slower phase of GFP-Cdc20 likely represents complex formation with Mad2 since it was tension insensitive and, unlike the fast phase, it was absent at metaphase kinetochores that lack Mad2 but retain Cdc20 and was absent at unattached prometaphase kinetochores for the Cdc20 derivative GFP-Cdc20(Delta1-167), which lacks the major Mad2 binding domain but retains kinetochore localization. GFP-Mps1 exhibited single exponential kinetics at unattached kinetochores with a t(1/2) of similar to10 s, whereas most GFP-Mad1 and GFP-Bub1 were much more stable components. Conclusions: Our data support catalytic models of checkpoint activation where Mad1 and Bub1 are mainly resident, Mad2 free of Mad1, BubR1 and Bub3 free of Bub1, Cdc20, and Mps1 dynamically exchange as part of the diffuse wait-anaphase signal; and Mad2 interacts with Cdc20 at unattached kinetochores.
引用
收藏
页码:953 / 964
页数:12
相关论文
共 44 条
  • [1] Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint
    Abrieu, A
    Magnaghi-Jaulin, L
    Kahana, JA
    Peter, M
    Castro, A
    Vigneron, S
    Lorca, T
    Cleveland, DW
    Labbé, JC
    [J]. CELL, 2001, 106 (01) : 83 - 93
  • [2] Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod
    Basu, J
    Logarinho, E
    Herrmann, S
    Bousbaa, H
    Li, ZX
    Chan, GKT
    Yen, TJ
    Sunkel, CE
    Goldberg, ML
    [J]. CHROMOSOMA, 1998, 107 (6-7) : 376 - 385
  • [3] Bulinski JC, 2001, J CELL SCI, V114, P3885
  • [4] Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores
    Chen, RH
    Shevchenko, A
    Mann, M
    Murray, AW
    [J]. JOURNAL OF CELL BIOLOGY, 1998, 143 (02) : 283 - 295
  • [5] BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1
    Chen, RH
    [J]. JOURNAL OF CELL BIOLOGY, 2002, 158 (03) : 487 - 496
  • [6] Spindle checkpoint requires Mad1-bound and Mad1-free Mad2
    Chung, EN
    Chen, RH
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (05) : 1501 - 1511
  • [7] Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex
    Fang, GW
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (03) : 755 - 766
  • [8] The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation
    Fang, GW
    Yu, HT
    Kirschner, MW
    [J]. GENES & DEVELOPMENT, 1998, 12 (12) : 1871 - 1883
  • [9] Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1
    Fang, GW
    Yu, HT
    Kirschner, MW
    [J]. MOLECULAR CELL, 1998, 2 (02) : 163 - 171
  • [10] The mouse Mps1p-like kinase regulates centrosome duplication
    Fisk, HA
    Winey, M
    [J]. CELL, 2001, 106 (01) : 95 - 104