Electrical and rheological percolation of polymer nanocomposites prepared with functionalized copper nanowires

被引:28
作者
Gelves, G. A. [1 ]
Lin, B. [1 ]
Sundararaj, U. [1 ]
Haber, J. A. [2 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Univ Alberta, Dept Chem, Edmonton, AB T6G 2G2, Canada
关键词
D O I
10.1088/0957-4484/19/21/215712
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The morphological, electrical and rheological characterization of polystyrene nanocomposites containing copper nanowires (CuNWs) functionalized with 1-octanethiol is presented. Characterization by SEM and TEM shows that surface functionalization of the nanowires resulted in significant dispersion of CuNWs in the PS matrix. The electrical characterization of the nanocomposites indicates that functionalized CuNWs start to form electrically conductive networks at lower concentrations (0.25 vol% Cu) than using unfunctionalized CuNWs (0.5 vol% Cu). The organic coating on the nanowires prevents significant changes in the electrical resistivity in the vicinity of the percolation threshold. Percolated nanocomposites showed electrical resistivity in the range of 10(6)-10(7) Omega cm. The transition from liquid-like to solid-like behavior (rheological percolation) of the nanocomposites was studied using dynamic rheology at 200 degrees C. Unfunctionalized CuNWs result in electrical and rheological percolation at similar concentrations. Functionalized CuNWs show rheological percolation at higher concentration (1.0-2.0 vol%) than that required for electrical percolation. This is attributed to the decrease in the interfacial tension between nanowires and polymer chains and its effect on the viscoelastic behavior of the combined polymer-nanowire networks.
引用
收藏
页数:12
相关论文
共 51 条
[1]  
Andrews R, 2002, MACROMOL MATER ENG, V287, P395, DOI 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO
[2]  
2-S
[3]   Polystyrene palladium nanocomposite for hydrogen sensing [J].
Atashbar, MZ ;
Banerji, D ;
Singamaneni, S ;
Bliznyuk, V .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2005, 427 :529-+
[4]   SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization [J].
Barraza, HJ ;
Pompeo, F ;
O'Rear, EA ;
Resasco, DE .
NANO LETTERS, 2002, 2 (08) :797-802
[5]   Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer [J].
Bellayer, S ;
Gilman, JW ;
Eidelman, N ;
Bourbigot, S ;
Flambard, X ;
Fox, DM ;
De Long, HC ;
Trulove, PC .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (06) :910-916
[6]   Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes [J].
Blake, Rowan ;
Coleman, Jonathan N. ;
Byrne, Michele T. ;
McCarthy, Joseph E. ;
Perova, Tatiana S. ;
Blau, Werner J. ;
Fonseca, Antonio ;
Nagy, Janos B. ;
Gun'ko, Yurii K. .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (43) :4206-4213
[7]   X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces [J].
Castner, DG ;
Hinds, K ;
Grainger, DW .
LANGMUIR, 1996, 12 (21) :5083-5086
[8]   Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite [J].
Chang, T. -E. ;
Kisliuk, A. ;
Rhodes, S. M. ;
Brittain, W. J. ;
Sokolov, A. P. .
POLYMER, 2006, 47 (22) :7740-7746
[9]   Preparation and characterization of PS/multi-walled carbon nanotube nanocomposites [J].
Choi, YJ ;
Hwang, SH ;
Hong, YS ;
Kim, JY ;
Ok, CY ;
Huh, W ;
Lee, SW .
POLYMER BULLETIN, 2005, 53 (5-6) :393-400
[10]   Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding [J].
Curran, SA ;
Zhang, DH ;
Wondmagegn, WT ;
Ellis, AV ;
Cech, J ;
Roth, S ;
Carroll, DL .
JOURNAL OF MATERIALS RESEARCH, 2006, 21 (04) :1071-1077