On the use of the FLAIR technique to improve the correction of eddy current induced artefacts in MR diffusion tensor imaging

被引:21
作者
Bastin, ME [1 ]
机构
[1] Univ Edinburgh, Western Gen Hosp, Dept Med Phys & Med Engn, Edinburgh EH4 2XU, Midlothian, Scotland
关键词
diffusion; echo-planar; distortion; warping; FLAIR;
D O I
10.1016/S0730-725X(01)00427-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Eddy current induced geometric distortions can only be accurately corrected in brain diffusion-weighted echo-planar (DW-EP) images for b-values less than approximately 300 s mm(-2) using the iterative cross-correlation (ICC) algorithm. This is due to the difference in signal intensity of the cerebrospinal fluid (CSF) compartment in the diffusion-weighted and baseline T-2-weighted echo-planar (T2W-EP) images. At larger values of b, image misalignment artefacts can, however, be removed by directly correlating CSF-suppressed T2W-EP images with non-CSF-suppressed and CSF-suppressed DW-EP images. Separate phantom experiments can also be performed to provide eddy current calibration data. Here the ability of these methods to remove eddy current induced artefacts from DW-EP images collected in volunteer diffusion tensor imaging (DTI) experiments is investigated. Monte Carlo simulations show that in order for the ICC algorithm to produce accurate estimates of the eddy current induced distortions at b-values greater than 1000 s mm(-2), the degree of CSF suppression should be greater than approximately 80%. This condition is typically met for FLAIR inversion times between 0.5 and 0.8 of the spin-lattice relaxation time of CSF. In volunteer studies the most complete image realignment was provided by direct correlation of CSF-suppressed T2W-EP and DW-EP images acquired in the FLAIR DTI experiment. These results indicate that although calibration data obtained from brain or phantom images can significantly reduce eddy current induced distortions, the optimum image realignment achievable using post-processing methods is likely to be that obtained by direct image warping techniques. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:937 / 950
页数:14
相关论文
共 44 条
[1]   Elimination of eddy current artifacts in diffusion-weighted echo-planar images: The use of bipolar gradients [J].
Alexander, AL ;
Tsuruda, JS ;
Parker, DL .
MAGNETIC RESONANCE IN MEDICINE, 1997, 38 (06) :1016-1021
[2]   ANALYSIS AND CORRECTION OF MOTION ARTIFACTS IN-DIFFUSION WEIGHTED IMAGING [J].
ANDERSON, AW ;
GORE, JC .
MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (03) :379-387
[3]   MULTI-PLANAR IMAGE-FORMATION USING NMR SPIN ECHOES [J].
MANSFIELD, P .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (03) :L55-L58
[4]   Diffusion anisotropy measurements in ischaemic stroke of the human brain [J].
Armitage, P. A. ;
Bastin, M. E. ;
Marshall, I. ;
Wardlaw, J. M. ;
Cannon, J. .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 1998, 6 (01) :28-36
[5]   A simplified method to measure the diffusion tensor from seven MR images [J].
Basser, PJ ;
Pierpaoli, C .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :928-934
[6]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[7]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[8]   Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative cross-correlation [J].
Bastin, ME .
MAGNETIC RESONANCE IMAGING, 1999, 17 (07) :1011-1024
[9]   A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging [J].
Bastin, ME ;
Armitage, PA ;
Marshall, I .
MAGNETIC RESONANCE IMAGING, 1998, 16 (07) :773-785
[10]   On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging [J].
Bastin, ME ;
Armitage, PA .
MAGNETIC RESONANCE IMAGING, 2000, 18 (06) :681-687