Head impact severity measures for evaluating mild traumatic brain injury risk exposure

被引:333
作者
Greenwald, Richard M. [1 ]
Gwin, Joseph T. [1 ]
Chu, Jeffrey J. [1 ]
Crisco, Joseph J. [2 ]
机构
[1] Simbex, Lebanon, NH 03766 USA
[2] Rhode Isl Hosp, Brown Med Sch, Dept Orthopaed, Providence, RI USA
关键词
concussion; football; head impact biomechanics; head impact tolerance; mild traumatic brain injury; sports injury prevention;
D O I
10.1227/01.neu.0000318162.67472.ad
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
OBJECTIVE: The aims of this study were to quantify the sensitivity of various biomechanical measures (linear acceleration, rotational acceleration, impact duration, and impact location) of head impact to the clinical diagnosis of concussion in United States football players and to develop a novel measure of head impact severity combining these measures into a single score that better predicts the incidence of concussion. METHODS: On-field head impact data were collected from 449 football players at 13 organizations (n = 289,916) using in-helmet systems of six single-axis accelerometers. Concussions were diagnosed by medical staff and later associated with impact data. Principal component analysis and a weighting coefficient based on impact location were used to transform correlated head impact measures into a new composite variable, weighted principal component score (wPCS). The predictive power of linear acceleration, rotational acceleration, head injury criterion, and wPCS was quantified using receiver operating characteristic curves. The null hypothesis, that a measure was flu more predictive than guessing, was tested (alpha = 0.05). In addition, receiver operating characteristic curves for wPCS and classical measures were directly compared to test the hypothesis that wPCS was more predictive of concussion than were classic measures (alpha = 0.05). RESULTS: When all of the impacts were considered, every biomechanical measure evaluated was statistically more predictive of concussion than guessing (P < 0,005). However, for the top 1 and 2% of impacts based on linear acceleration, a subset that consisted of 82% of all diagnosed concussions, only wPCS was significantly more predictive of concussion than guessing (P < 0.03); when compared with each other, wPCS was more predictive of concussion than were classical measures for the top I and 2% of all of the data (P < 0.04). CONCLUSION: A weighted combination of several biomechanical inputs, including impact location, is more predictive of concussion than a single biomechanical measure. This study is the first to the authors' knowledge to quantify improvements in the sensitivity of a biomechanical measure to incidence of concussion when impact location is considered. KEY WORDS: Concussion, Football, Head impact biomechanics, Head impact tolerance, Mild traumatic brain injury, Sports injury prevention
引用
收藏
页码:789 / 798
页数:10
相关论文
共 41 条
[21]  
JACKSON JE, 1991, USERS GUIDE PRINCIPA, P189
[22]  
JOLLIFE IT, 1986, PRINCIPAL COMPONENT, P167
[23]   Influence of impact direction on the human head in prediction of subdural hematoma [J].
Kleiven, S .
JOURNAL OF NEUROTRAUMA, 2003, 20 (04) :365-379
[24]  
Manoogian S, 2006, BIOMED SCI INSTRUM, V42, P383
[25]   A PROPOSED TOLERANCE CRITERION FOR DIFFUSE AXONAL INJURY IN MAN [J].
MARGULIES, SS ;
THIBAULT, LE .
JOURNAL OF BIOMECHANICS, 1992, 25 (08) :917-923
[26]  
NETER J, 1996, APPL LINEAR STAT MOD, P289
[27]  
Newman J A., 2000, 44 STAPP CAR CRASH C
[28]  
NEWMAN JA, 2000, P INT RES C BIOM IMP, P223
[29]  
NUSHOLTZ G, 1993, BIOMECH IMPACT INJUR, P159
[30]   CEREBRAL CONCUSSION AND TRAUMATIC UNCONSCIOUSNESS - CORRELATION OF EXPERIMENTAL AND CLINICAL OBSERVATIONS ON BLUNT HEAD-INJURIES [J].
OMMAYA, AK ;
GENNARELLI, TA .
BRAIN, 1974, 97 (DEC) :633-+