Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index

被引:21
作者
Pile, DFP
机构
[1] Univ Tokushima, Fac Engn, Dept Opt Sci & Technol, Tokushima 7708506, Japan
[2] Queensland Univ Technol, Sch Phys & Chem Sci, Appl Opt Program, Brisbane, Qld, Australia
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2005年 / 81卷 / 05期
关键词
D O I
10.1007/s00340-005-1916-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An efficient compact-2D finite-difference time-domain method is presented for the numerical analysis of guided modes in waveguides that may include negative dielectric permittivity, negative magnetic permeability and negative refractive index materials. Both complex variable and real variable methods are given. The method is demonstrated for the analysis of channel-plasmon-polariton guided modes in triangular groves on a metal surface. The presented method can be used for a range of waveguide problems that were previously unsolvable analytically, due to complex geometries, or numerically, due to computational requirements of conventional three-dimensional finite-difference time-domain methods. A three-dimensional finite-difference time-domain algorithm that also allows analysis in the presence of bound or free electric and equivalent magnetic charges is presented and an example negative refraction demonstrates the method.
引用
收藏
页码:607 / 613
页数:7
相关论文
共 33 条
[11]  
Krenn JR, 2003, NAT MATER, V2, P210, DOI 10.1038/nmat865
[12]   Surface plasmon propagation in microscale metal stripes [J].
Lamprecht, B ;
Krenn, JR ;
Schider, G ;
Ditlbacher, H ;
Salerno, M ;
Felidj, N ;
Leitner, A ;
Aussenegg, FR ;
Weeber, JC .
APPLIED PHYSICS LETTERS, 2001, 79 (01) :51-53
[13]   Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides [J].
Maier, SA ;
Kik, PG ;
Atwater, HA ;
Meltzer, S ;
Harel, E ;
Koel, BE ;
Requicha, AAG .
NATURE MATERIALS, 2003, 2 (04) :229-232
[14]   Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices [J].
Maier, SA ;
Brongersma, ML ;
Atwater, HA .
APPLIED PHYSICS LETTERS, 2001, 78 (01) :16-18
[15]   Total-field absorbing boundary conditions for the time-domain electromagnetic field equations [J].
Mur, G .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1998, 40 (02) :100-102
[16]   Channel polaritons [J].
Novikov, IV ;
Maradudin, AA .
PHYSICAL REVIEW B, 2002, 66 (03) :354031-3540313
[17]   SURFACE POLARITONS IN A CIRCULARLY CYLINDRICAL INTERFACE - SURFACE PLASMONS [J].
PFEIFFER, CA ;
ECONOMOU, EN ;
NGAI, KL .
PHYSICAL REVIEW B, 1974, 10 (08) :3038-3051
[18]   Plasmonic subwavelength waveguides: next to zero losses at sharp bends [J].
Pile, DEP ;
Gramotnev, DK .
OPTICS LETTERS, 2005, 30 (10) :1186-1188
[19]   Nanoscale Fabry-Perot interferometer using channel plasmon-polaritons in triangular metallic grooves [J].
Pile, DFP ;
Gramotnev, DK .
APPLIED PHYSICS LETTERS, 2005, 86 (16) :1-3
[20]   Channel plasmon-polariton in a triangular groove on a metal surface [J].
Pile, DFP ;
Gramotnev, DK .
OPTICS LETTERS, 2004, 29 (10) :1069-1071