An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency

被引:366
作者
Ahmed, Jubaer
Salam, Zainal [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Ctr Elect Energy Syst, Johor Baharu 81310, Malaysia
关键词
Solar energy; Photovoltaic; P&O; MPPT; P-V curve; PHOTOVOLTAIC MODULES; ADAPTIVE PERTURB; SYSTEM; OPTIMIZATION; ENERGY; COST;
D O I
10.1016/j.apenergy.2015.04.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a method to improve the efficiency of the P&O maximum power point tracker (MPPT) by reducing the steady state oscillation and eliminating the possibility of the algorithm to lose its tracking direction. A dynamic perturbation step-size is employed to reduce the oscillation, while boundary conditions are introduced to prevent it from diverging away from the MPP. To prove its effectiveness, the proposed P&O is compared with the conventional and adaptive P&O using the Ropp, sinusoidal and ramp irradiance tests. In addition, the performances are evaluated based on a one-day (10 h) irradiance and temperature profile. The algorithm is implemented on a buck-boost converter and benchmarked by the standard MPFT efficiency (eta(MPPT)) calculation. It was found that, for all the tests, the eta(MPPT) of the proposed P&O scheme is increased by approximately two percentage points. Besides, the proposed algorithm does not require any extra hardware components; only several lines of additional software codes are to be embedded into the conventional P&O MPPT control program. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 27 条
[1]   High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids [J].
Abdelsalam, Ahmed K. ;
Massoud, Ahmed M. ;
Ahmed, Shehab ;
Enjeti, Prasad N. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (04) :1010-1021
[2]   A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability [J].
Ahmed, Jubaer ;
Salam, Zainal .
APPLIED ENERGY, 2014, 119 :118-130
[3]  
Alonso R, POWER ELECT APPL, P1
[4]  
[Anonymous], 21 EUR PHOT SOL EN C
[5]   A proposed maximum power point tracking algorithm based on a new testing standard [J].
Bennett, Thomas ;
Zilouchian, Ali ;
Messenger, Roger .
SOLAR ENERGY, 2013, 89 :23-41
[6]   Comparison of photovoltaic array maximum power point tracking techniques [J].
Esram, Trishan ;
Chapman, Patrick L. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (02) :439-449
[7]   Predictive & adaptive MPPT perturb and observe method [J].
Femia, N. ;
Granozio, D. ;
Petrone, G. ;
Spagnuolo, G. ;
Vitelli, M. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2007, 43 (03) :934-950
[8]   Optimization of perturb and observe maximum power point tracking method [J].
Femia, N ;
Petrone, G ;
Spagnuolo, G ;
Vitelli, M .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2005, 20 (04) :963-973
[9]   A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems [J].
Femia, Nicola ;
Petrone, Giovanni ;
Spagnuolo, Giovanni ;
Vitelli, Massimo .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (11) :4473-4482
[10]   A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition [J].
Ishaque, Kashif ;
Salam, Zainal .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 19 :475-488