Vertical density matrix algorithm: A higher-dimensional numerical renormalization scheme based on the tensor product state ansatz

被引:56
作者
Maeshima, N [1 ]
Hieida, Y
Akutsu, Y
Nishino, T
Okunishi, K
机构
[1] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan
[2] Kobe Univ, Grad Sch Sci, Dept Phys, Rokkoudai 6578501, Japan
[3] Niigata Univ, Fac Sci, Dept Phys, Igarashi 9502181, Japan
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 01期
关键词
D O I
10.1103/PhysRevE.64.016705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a new algorithm to calculate the thermodynamic quantities of three-dimensional (3D) classical statistical systems, based on the ideas of the tensor product state and the density matrix renormalization group. We represent the maximum-eigenvalue eigenstate of the transfer matrix as the product of local tensors that are iteratively optimized by the use of the "vertical density matrix" formed by cutting the system along the transfer direction. This algorithm, which we call vertical density matrix algorithm (VDMA), is successfully applied to the 3D Ising model. Using the Suzuki-Trotter transformation we can also apply the VDMA to 2D quantum systems, which we demonstrate for the 2D transverse field Ising model.
引用
收藏
页码:6 / 016705
页数:6
相关论文
共 26 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]   CLASSICAL EQUIVALENTS OF ONE-DIMENSIONAL QUANTUM-MECHANICAL SYSTEMS [J].
BARMA, M ;
SHASTRY, BS .
PHYSICAL REVIEW B, 1978, 18 (07) :3351-3359
[4]   Two-dimensional infinite-system density-matrix renormalization-group algorithm [J].
Henelius, P .
PHYSICAL REVIEW B, 1999, 60 (13) :9561-9565
[5]   Numerical renormalization approach to two-dimensional quantum antiferromagnets with valence-bond-solid type ground state [J].
Hieida, Yasuhiro ;
Okunishi, Kouichi ;
Akutsu, Yasuhiro .
NEW JOURNAL OF PHYSICS, 1999, 1 :7.1-7.17
[6]   Griffiths-McCoy singularities in the transverse field Ising model on the randomly diluted square lattice [J].
Ikegami, T ;
Miyashita, S ;
Rieger, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) :2671-2677
[7]   A TWO-DIMENSIONAL ISOTROPIC QUANTUM ANTIFERROMAGNET WITH UNIQUE DISORDERED GROUND-STATE [J].
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (1-2) :383-415
[8]  
Landau D., 1994, COMPUTER SIMULATIONS
[9]   APPROXIMATE DIAGONALIZATION USING THE DENSITY-MATRIX RENORMALIZATION-GROUP METHOD - A 2-DIMENSIONAL-SYSTEMS PERSPECTIVE [J].
LIANG, SD ;
PANG, HB .
PHYSICAL REVIEW B, 1994, 49 (13) :9214-9217
[10]   Single-block renormalization group:: quantum mechanical problems [J].
Martín-Delgado, MA ;
Rodriguez-Laguna, J ;
Sierra, G .
NUCLEAR PHYSICS B, 2001, 601 (03) :569-590