共 111 条
Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: A new fluorescence quenching mechanism
被引:729
作者:
Zhao, Guang-Jiu
[1
]
Liu, Jian-Yong
[1
]
Zhou, Li-Chuan
[1
]
Han, Ke-Li
[1
]
机构:
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Liaoning, Peoples R China
关键词:
D O I:
10.1021/jp0734530
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Solute-solvent intermolecular photoinduced electron transfer (ET) reaction was proposed to account for the drastic fluorescence quenching behaviors of oxazine 750 (OX750) chromophore in protic alcoholic solvents. According to our theoretical calculations for the hydrogen-bonded OX750-(alcohol)(n) complexes using the time-dependent density functional theory (TDDFT) method, we demonstrated that the ET reaction takes place from the alcoholic solvents to the chromophore and the intermolecular ET passing through the site-specific intermolecular hydrogen bonds exhibits an unambiguous site selectivity. In our motivated experiments of femtosecond time-resolved stimulated emission pumping fluorescence depletion spectroscopy (FS TR SEP FD), it could be noted that the ultrafast ET reaction takes place as fast as 200 fs. This ultrafast intermolecular photoinduced ET is much faster than the diffusive solvation process, and even significantly faster than the intramolecular vibrational redistribution (IVR) process of the OX750 chromophore. Therefore, the ultrafast intermolecular ET should be coupled with the hydrogen-bonding dynamics occurring in the sub-picosecond time domain. We theoretically demonstrated for the first time that the selected hydrogen bonds are transiently strengthened in the excited states for facilitating the ultrafast solute-solvent intermolecular ET reaction.
引用
收藏
页码:8940 / 8945
页数:6
相关论文