Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution

被引:86
作者
Malacarne, LC
Mendes, RS
Pedron, IT
Lenzi, EK
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.030101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The nonlinear diffusion equation partial derivative rho/partial derivativet=D<(<Delta>)over tilde>rho (nu) is analyzed here, where <(<Delta>)over tilde>=(1/r(d-1))(partial derivative/partial derivativer)r(d-1-theta)partial derivative/partial derivativer, and d, theta, and nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (nu =1) and the spherical anomalous diffusion for porous media (theta =0). An exact point-source solution is obtained, enabling us to describe a large class of subdiffusion [theta>(1-nu )d], "normal" diffusion [theta=(1 - nu )d] and superdiffusion [theta<(1-<nu>)d]. Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.
引用
收藏
页数:4
相关论文
共 19 条
[1]   SUBRECOIL LASER COOLING AND LEVY FLIGHTS [J].
BARDOU, F ;
BOUCHAUD, JP ;
EMILE, O ;
ASPECT, A ;
COHENTANNOUDJI, C .
PHYSICAL REVIEW LETTERS, 1994, 72 (02) :203-206
[2]   EVOLUTION OF A STABLE PROFILE FOR A CLASS OF NONLINEAR DIFFUSION EQUATIONS WITH FIXED BOUNDARIES [J].
BERRYMAN, JG .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (11) :2108-2115
[3]   The nonlinear Fokker-Planck equation with state-dependent diffusion - a nonextensive maximum entropy approach [J].
Borland, L ;
Pennini, F ;
Plastino, AR ;
Plastino, A .
EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (02) :285-297
[4]   Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model [J].
Borland, L .
PHYSICAL REVIEW E, 1998, 57 (06) :6634-6642
[5]   ANOMALOUS DIFFUSION AT LIQUID SURFACES [J].
BYCHUK, OV ;
OSHAUGHNESSY, B .
PHYSICAL REVIEW LETTERS, 1995, 74 (10) :1795-1798
[6]  
CURADO EME, 1991, J PHYS A-MATH GEN, V24, P3187
[7]   GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS [J].
CURADO, EMF ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :L69-L72
[8]  
CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
[9]   DIFFUSION ON FRACTALS [J].
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1985, 32 (05) :3073-3083
[10]   ANALYTICAL SOLUTIONS FOR DIFFUSION ON FRACTAL OBJECTS [J].
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (05) :455-458