Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model

被引:292
作者
Borland, L [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 06期
关键词
D O I
10.1103/PhysRevE.57.6634
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive a phenomenological model of the underlying microscopic Langevin equation of the nonlinear Fokker-Planck equation, which is used to describe anomalous correlated diffusion. The resulting distribution-dependent stochastic equation is then analyzed and properties such as long-time scaling and the Hurst exponent are calculated both analytically and from simulations. Results of this microscopic theory are compared with those of fractional Brownian motion.
引用
收藏
页码:6634 / 6642
页数:9
相关论文
共 30 条
[1]   FRACTAL RANDOM-WALKS FROM A VARIATIONAL FORMALISM FOR TSALLIS ENTROPIES [J].
ALEMANY, PA ;
ZANETTE, DH .
PHYSICAL REVIEW E, 1994, 49 (02) :R956-R958
[2]   EVOLUTION OF A STABLE PROFILE FOR A CLASS OF NONLINEAR DIFFUSION EQUATIONS WITH FIXED BOUNDARIES [J].
BERRYMAN, JG .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (11) :2108-2115
[3]   Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics [J].
Boghosian, BM .
PHYSICAL REVIEW E, 1996, 53 (05) :4754-4763
[4]  
BORLAND L, IN PRESS PHYS LETT A
[5]   ANOMALOUS DIFFUSION AT LIQUID SURFACES [J].
BYCHUK, OV ;
OSHAUGHNESSY, B .
PHYSICAL REVIEW LETTERS, 1995, 74 (10) :1795-1798
[6]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[7]   Anomalous diffusion in linear shear flows [J].
Compte, A ;
Jou, D ;
Katayama, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04) :1023-1030
[8]   Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity [J].
Costa, UMS ;
Lyra, ML ;
Plastino, AR ;
Tsallis, C .
PHYSICAL REVIEW E, 1997, 56 (01) :245-250
[9]  
Feder J., 1988, FRACTALS PLENUM
[10]   STATISTICAL MECHANICS OF ASSEMBLIES OF COUPLED OSCILLATORS [J].
FORD, GW ;
KAC, M ;
MAZUR, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (04) :504-+