Complex cellular responses to reactive oxygen species

被引:322
作者
Temple, MD
Perrone, GG
Dawes, IW [1 ]
机构
[1] Univ New S Wales, Ramaciotti Ctr Gene Funct Anal, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/j.tcb.2005.04.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H2O2. This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.
引用
收藏
页码:319 / 326
页数:8
相关论文
共 81 条
[1]   FORMATION OF DITYROSINE CROSS-LINKS IN PROTEINS BY OXIDATION OF TYROSINE RESIDUES [J].
AESCHBACH, R ;
AMADO, R ;
NEUKOM, H .
BIOCHIMICA ET BIOPHYSICA ACTA, 1976, 439 (02) :292-301
[2]   Asymmetric inheritance of oxidatively damaged proteins during cytokinesis [J].
Aguilaniu, H ;
Gustafsson, L ;
Rigoulet, M ;
Nyström, T .
SCIENCE, 2003, 299 (5613) :1751-1753
[3]   Protein oxidation in G0 cells of Saccharomyces cerevisiae depends on the state rather than rate of respiration and is enhanced in pos9 but not yap1 mutants [J].
Aguilaniu, H ;
Gustafsson, L ;
Rigoulet, M ;
Nyström, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35396-35404
[4]   Genome-wide transcriptional responses to a lipid hydroperoxide: Adaptation occurs without induction of oxidant defenses [J].
Alic, N ;
Felder, T ;
Temple, MD ;
Gloeckner, C ;
Higgins, VJ ;
Briza, P ;
Dawes, IW .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 37 (01) :23-35
[5]   Identification of a Saccharomyces cerevisiae gene that is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide [J].
Alic, N ;
Higgins, VJ ;
Dawes, IW .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (06) :1801-1810
[6]   ENDOGENOUS MUTAGENS AND THE CAUSES OF AGING AND CANCER [J].
AMES, BN ;
GOLD, LS .
MUTATION RESEARCH, 1991, 250 (1-2) :3-16
[7]   Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases [J].
Avery, AM ;
Avery, SV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :33730-33735
[8]   Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling [J].
Azevedo, D ;
Tacnet, F ;
Delaunay, A ;
Rodrigues-Pousada, C ;
Toledano, MB .
FREE RADICAL BIOLOGY AND MEDICINE, 2003, 35 (08) :889-900
[9]  
BECKMAN JS, 1994, METHOD ENZYMOL, V233, P229, DOI DOI 10.1016/S0076-6879(94)33026-3
[10]   Repair of 8-oxoguanine in Saccharomyces cerevisiae:: Interplay of DNA repair and replication mechanisms [J].
Boiteux, S ;
Gellon, L ;
Guibourt, N .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (12) :1244-1253