Peptide-induced formation of cholesterol-rich domains

被引:57
作者
Epand, RM [1 ]
Sayer, BG
Epand, RF
机构
[1] McMaster Univ, Dept Biochem, Hamilton, ON L8N 3Z5, Canada
[2] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
关键词
D O I
10.1021/bi035587j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The peptide N-acetyl-LWYIK-amide causes the reorganization of bilayers of phosphatidylcholine and cholesterol to produce domains enriched in cholesterol. At a cholesterol mol fraction of 0.5, addition of N-acetyl-LWYIK-amide results in the formation of cholesterol crystallites. Addition of this peptide to mixtures of 1-stearoyl-2-oleoylphosphatidylcholine with lower mol fractions of cholesterol results in an increase in the enthalpy of the chain melting transition of the phospholipid, indicating the depletion of cholesterol from a domain in the membrane. The peptide binds to membranes both with and without cholesterol. However, H-1 magic-angle spinning (MAS) nuclear Overhauser effect spectroscopy (NOESY) indicates that in the presence of cholesterol the peptide has greater penetration into the bilayer. C-13 MAS NMR indicates that the peptide has stronger interactions with the A ring of cholesterol than it does with the interior of the bilayer. These results are in contrast with those of another peptide, N-acetyl-KYWFYR-amide, which does not promote the formation of cholesterol crystallites and does not show preferential interaction with cholesterol by NMR. Therefore, cholesterol can promote the insertion of N-acetyl-LWYIK-amide into a membrane and this peptide will sequester cholesterol into domains. These properties help to explain the observation that this sequence is found to be important in causing the fusion protein of human immunodeficiency virus (HIV) to sequester into raft domains in biological membranes.
引用
收藏
页码:14677 / 14689
页数:13
相关论文
共 46 条
[1]  
Ames B., 1966, METHOD ENZYMOL, V8, P115, DOI DOI 10.1016/0076-6879(66)08014-5
[2]   Stabilizing interactions between aromatic and basic side chains in α-helical peptides and proteins.: Tyrosine effects on helix circular dichroism [J].
Andrew, CD ;
Bhattacharjee, S ;
Kokkoni, N ;
Hirst, JD ;
Jones, GR ;
Doig, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) :12706-12714
[3]   1H-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides Gly-Gly-X-Ala at pressures between 0.1 and 200 MPa [J].
Arnold, MR ;
Kremer, W ;
Lüdemann, HD ;
Kalbitzer, HR .
BIOPHYSICAL CHEMISTRY, 2002, 96 (2-3) :129-140
[4]   Phospholipid/cholesterol model membranes: formation of cholesterol crystallites [J].
Bach, D ;
Wachtel, E .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2003, 1610 (02) :187-197
[5]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[6]   Molecular organization of cholesterol in polyunsaturated phospholipid membranes:: a solid state 2H NMR investigation [J].
Brzustowicz, MR ;
Stillwell, W ;
Wassall, SR .
FEBS LETTERS, 1999, 451 (02) :197-202
[7]   Controlling membrane cholesterol content. A role for polyunsaturated (Docosahexaenoate) phospholipids [J].
Brzustowicz, MR ;
Cherezov, V ;
Zerouga, M ;
Caffrey, M ;
Stillwell, W ;
Wassall, SR .
BIOCHEMISTRY, 2002, 41 (41) :12509-12519
[8]   Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions [J].
de Planque, MRR ;
Bonev, BB ;
Demmers, JAA ;
Greathouse, DV ;
Koeppe, RE ;
Separovic, F ;
Watts, A ;
Killian, JA .
BIOCHEMISTRY, 2003, 42 (18) :5341-5348
[9]   Lipid rafts reconstituted in model membranes [J].
Dietrich, C ;
Bagatolli, LA ;
Volovyk, ZN ;
Thompson, NL ;
Levi, M ;
Jacobson, K ;
Gratton, E .
BIOPHYSICAL JOURNAL, 2001, 80 (03) :1417-1428
[10]   Protein-induced formation of cholesterol-rich domains [J].
Epand, RM ;
Maekawa, S ;
Yip, CM ;
Epand, RF .
BIOCHEMISTRY, 2001, 40 (35) :10514-10521