Constructive Lyapunov stabilization of nonlinear cascade systems

被引:178
作者
Jankovic, M [1 ]
Sepulchre, R [1 ]
Kokotovic, PV [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,CTR CONTROL ENGN & COMPUTAT,SANTA BARBARA,CA 93106
基金
美国国家科学基金会;
关键词
D O I
10.1109/9.545712
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a global stabilization procedure for nonlinear cascade and feedforward systems which extends the existing stabilization results, Our main tool is the construction of a Lyapunov function for a class of (globally stable) uncontrolled cascade systems, This construction serves as a basis for a recursive controller design for cascade and feedforward systems. We give conditions for continuous differentiability of the Lyapunov function and the resulting control law and propose methods for their exact and approximate computation.
引用
收藏
页码:1723 / 1735
页数:13
相关论文
共 23 条
[1]   PASSIVITY, FEEDBACK EQUIVALENCE, AND THE GLOBAL STABILIZATION OF MINIMUM PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A ;
WILLEMS, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (11) :1228-1240
[2]   ROBUSTNESS OF NONLINEAR STATE FEEDBACK - A SURVEY [J].
GLAD, ST .
AUTOMATICA, 1987, 23 (04) :425-435
[3]  
Hahn W., 1967, STABILITY MOTION
[4]  
Jacobson D.H., 1977, EXTENSIONS LINEAR QU
[5]   TORA example: Cascade- and passivity-based control designs [J].
Jankovic, M ;
Fontaine, D ;
Kokotovic, PV .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1996, 4 (03) :292-297
[6]  
JANKOVIC M, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P4347
[7]  
JANKOVIC M, 1996, ADAPTIVE CONTROL NON
[8]  
JANKOVIC M, IN PRESS AUTOMATICA
[9]   CONTROLLABILITY AND STABILITY [J].
JURDJEVIC, V ;
QUINN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (03) :381-389
[10]   A POSITIVE REAL CONDITION FOR GLOBAL STABILIZATION OF NONLINEAR-SYSTEMS [J].
KOKOTOVIC, PV ;
SUSSMANN, HJ .
SYSTEMS & CONTROL LETTERS, 1989, 13 (02) :125-133