An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays

被引:50
作者
Chen, Jian-Ging [2 ]
Chen, Chia-Yuan [1 ]
Wu, Chun-Guey [1 ]
Lin, Chia-Yu [2 ]
Lai, Yi-Hsuan [2 ]
Wang, Chun-Chieh [2 ]
Chen, Hsin-Wei [2 ]
Vittal, R. [2 ]
Ho, Kuo-Chuan [2 ,3 ]
机构
[1] Natl Cent Univ, Dept Chem, Chungli 32054, Taiwan
[2] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan
关键词
CONVERSION EFFICIENCY; FABRICATION;
D O I
10.1039/c0jm00598c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three types of flexible dye-sensitized solar cells (DSSC) were fabricated, using as the photoanode an array of TiO2 nanotubes (TNT) or TiO2 nanotubes filled with TiO2 nanoparticles (TNT-TNP, particle size 14 nm) or TiO2 nanotubes not only filled with nanoparticles but also coated with a layer of strontium oxide (TNT-TNP-SrO). The nanotubes were obtained by electrochemical oxidation of a Ti sheet and their lengths (0.5 mm to 18.8 mm) were controlled by varying the anodization period from 0.25 to 18 h. The DSSC using titanium nanotube arrays as the photoanode (hereafter called TNT-DSSC) showed a solar-to-electricity conversion efficiency (eta) of 3.46%, when the anodization period was 12 h. When TNT-TNP was used as the anode, the efficiency of the DSSC (hereafter called TNT-TNP-DSSC) has increased to 4.56%. An efficiency of 5.39% was obtained when TNT-TNP-SrO was used as the photoanode for the DSSC (hereafter called TNT-TNP-SrO-DSSC). Our own dye, coded as CYC-B1 was used in all the cases. The morphologies of TNT and TNT-TNP were characterized by FE-SEM. XRD was used to characterize the TNT. Explanations on the photovoltaic performances of the DSSCs are substantiated by using electrochemical impedance spectra (EIS), incident photon to current conversion efficiency (IPCE) curves, and Mott-Schottky plots.
引用
收藏
页码:7201 / 7207
页数:7
相关论文
共 32 条
[1]   Formation of titania nanotubes and applications for dye-sensitized solar cells [J].
Adachi, M ;
Murata, Y ;
Okada, I ;
Yoshikawa, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :G488-G493
[2]   Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles [J].
Alivov, Yahya ;
Fan, Z. Y. .
APPLIED PHYSICS LETTERS, 2009, 95 (06)
[3]   Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high-band-gap oxide layers [J].
Bandara, J ;
Weerasinghe, HC .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 88 (04) :341-350
[4]   Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements [J].
Barnes, Piers R. F. ;
Anderson, Assaf Y. ;
Koops, Sara E. ;
Durrant, James R. ;
O'Regan, Brian C. .
Journal of Physical Chemistry C, 2009, 113 (03) :1126-1136
[5]   A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells [J].
Chen, Chia-Yuan ;
Wu, Shi-Jhang ;
Wu, Chun-Guey ;
Chen, Jian-Ging ;
Ho, Kuo-Chuan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (35) :5822-5825
[6]   Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes [J].
Eder, Dominik ;
Windle, Alan H. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (17) :2036-2043
[7]   Titanium oxide nanotube arrays prepared by anodic oxidation [J].
Gong, D ;
Grimes, CA ;
Varghese, OK ;
Hu, WC ;
Singh, RS ;
Chen, Z ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) :3331-3334
[8]   Mesoscopic solar cells for electricity and hydrogen production from sunlight [J].
Grätzel, M .
CHEMISTRY LETTERS, 2005, 34 (01) :8-13
[9]   Formation of a titanium dioxide nanotube array [J].
Hoyer, P .
LANGMUIR, 1996, 12 (06) :1411-1413
[10]   High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode [J].
Ito, Seigo ;
Ha, Ngoc-Le Cevey ;
Rothenberger, Guido ;
Liska, Paul ;
Comte, Pascal ;
Zakeeruddin, Shaik M. ;
Pechy, Peter ;
Nazeeruddin, Mohammad Khaja ;
Graetzel, Michael .
CHEMICAL COMMUNICATIONS, 2006, (38) :4004-4006