Velocity-Based Moving Mesh Methods for Nonlinear Partial Differential Equations

被引:51
作者
Baines, M. J. [1 ]
Hubbard, M. E. [2 ]
Jimack, P. K. [2 ]
机构
[1] Univ Reading, Dept Math, Reading RG6 6AX, Berks, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
关键词
Time-dependent nonlinear diffusion; moving boundaries; finite element method; Lagrangian meshes; conservation of mass; FINITE-ELEMENT-METHOD; GEOMETRIC CONSERVATION LAW; FLUID-STRUCTURE INTERACTION; ONE-DIMENSIONAL INFILTRATION; FREE-SURFACE FLOWS; NUMERICAL-SOLUTION; INCOMPRESSIBLE FLUIDS; EVOLUTIONARY PROBLEMS; GRID ADAPTATION; GALERKIN METHOD;
D O I
10.4208/cicp.201010.040511a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article describes a number of velocity-based moving mesh numerical methods for multidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.
引用
收藏
页码:509 / 576
页数:68
相关论文
共 159 条
[101]   A SPINE-FLUX METHOD FOR SIMULATING FREE-SURFACE FLOWS [J].
MASHAYEK, F ;
ASHGRIZ, N .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) :367-379
[102]   Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes [J].
Mavripils, DJ ;
Yang, Z .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) :557-573
[103]  
Mendes PA, 1999, INT J NUMER METH FL, V30, P897, DOI 10.1002/(SICI)1097-0363(19990815)30:7<897::AID-FLD871>3.0.CO
[104]  
2-U
[105]  
Mercer J. W., 1990, J CONTAM HYDROL, V6, P107, DOI DOI 10.1016/0169-7722(90)90043-G
[106]   An arbitrary Lagrangian Eulerian formulation for residual distribution schemes on moving grids [J].
Michler, C ;
De Sterck, H ;
Deconinck, H .
COMPUTERS & FLUIDS, 2003, 32 (01) :59-71
[107]   A geometrical-mechanical interpretation of gradient-weighted moving finite elements [J].
Miller, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :67-90
[108]   Stabilized moving finite elements for convection dominated problems [J].
Miller, K .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (02) :163-182
[109]   MOVING FINITE-ELEMENTS .1. [J].
MILLER, K ;
MILLER, RN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) :1019-1032
[110]  
MILLER K, 1981, SIAM J NUMER ANAL, V18, P1033, DOI 10.1137/0718071